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Abstract 

The purpose of multi-focus image fusion is to gather the essential information and the focused parts from the 

input multi-focus images into a single image. These multi-focus images are captured with different depths of 

focus of cameras. A lot of multi-focus image fusion techniques have been introduced using the focus 

measurement in the spatial domain. However, multi-focus image fusion processing is very time-saving and 

appropriate in discrete cosine transform (DCT) domain, especially when JPEG images are used in visual 

sensor networks. Thus most of the researchers are interested in focus measurement calculations and fusion 

processes directly in the DCT domain. Accordingly, many researchers have developed some techniques that 

substitute the spatial domain fusion process with the DCT domain fusion process. Previous works on the 

DCT domain have some shortcomings in the selection of suitable divided blocks according to their criterion 

for focus measurement. In this paper, calculation of two powerful focus measurements, energy of Laplacian 

and variance of Laplacian, are proposed directly in the DCT domain. Moreover, two other new focus 

measurements that work by measuring the correlation coefficient between the source blocks, and the 

artificial blurred blocks are developed completely in the DCT domain. However, a new consistency 

verification method is introduced as a post-processing, significantly improving the quality of the fused 

image. These proposed methods significantly reduce the drawbacks due to unsuitable block selection. The 

output image quality of our proposed methods is demonstrated by comparing the results of the proposed 

algorithms with the previous ones. 

 

Keywords: Image Fusion, Multi-Focus, Visual Sensor Networks, Discrete Cosine Transform, Variance and 

Energy of Laplacian. 

1. Introduction 

The image fusion process is defined as gathering 

all the important information from multiple 

images, and their inclusion into fewer images, 

usually a single one. This single image is more 

informative and accurate than any single source 

image, and it consists of all the necessary 

information. The purpose of image fusion is not 

only to reduce the amount of data but also to 

construct images that are more appropriate and 

understandable for the human and machine 

perception ‎[1]. The ideal image consists of all the 

scene components that are completely transparent 

but due to intrinsic limitations in the system, it 

may not have a single image of the scene 

including all the necessary information and 

description of the object details. The main reason 

is the limited depth of focus in the optical lenses 

of CCD/CMOS cameras [2, 3]. Therefore, those 

objects that are only located in the special depth 

of focus are clear, and the others are blurred. To 

solve this problem, it is recommended to record 

multiple images of a scene with different depths 

of focus. The main idea of this work is to focus all 

the components in multiple captured images. 

Fortunately, in visual sensor networks (VSNs), 

there is a capability to increase the different 
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depths of focus using a large number of cameras 

[4, 5]. In VSN, sensors are cameras recording 

images and video sequences. Despite its 

advantages, it has some limitations such as energy 

consumption, power, processing time, and limited 

bandwidth. Due to a huge amount of data created 

by camera sensors compared with the other 

sensors e.g. pressure, temperature, and 

microphone, energy consumption plays an 

important role in the lifetime of camera sensors 

[6, 7]. Therefore, it is important to process the 

local input images. In VSN, there are many 

camera nodes that are able to process the captured 

images locally, and collect the necessary 

information ‎[8]. Due to the aforementioned 

reasons, multi-focus image fusion is manifested. It 

is a process that produces an image with all the 

unified components of a scene by merging 

multiple images with different depths of focus on 

the scene. 

1.1. Related works 

Several works have been carried out on image 

fusion in the spatial domain [9-19]. Many of these 

methods are complicated and suffer from being 

time-consuming as they are based upon the spatial 

domain. Image fusion based on the multi-scale 

transform is the most commonly used and very 

promising technique. Laplacian pyramid 

transform ‎[20], gradient pyramid-based 

transform ‎[21], morphological pyramid 

transform ‎[22] and the premier ones,  discrete 

wavelet transform (DWT) ‎[23], shift-invariant 

wavelet transform (SIDWT) ‎[24], and discrete 

cosine harmonic wavelet transform 

(DCHWT) ‎[25] are some examples  of  the image 

fusion methods based on the multi-scale 

transform. These methods are complex and have 

some limitations e.g. processing time and energy 

consumption. For example, the multi-focus image 

fusion methods based on DWT require a lot of 

convolution operations, so it takes more time and 

energy for processing. Therefore, most of methods 

used in the multi-scale transform are not suitable 

for performing in real-time applications ‎[4]. 

Moreover, these methods are not very successful 

in edge places due to missing the edges of the 

image in the wavelet transform process. However, 

they create ringing artefacts in the output image 

and reduce its quality.  

Due to the aforementioned problems in the multi-

scale transform methods, researchers are 

interested in multi-focus image fusion in the 

discrete cosine transform (DCT) domain. The 

DCT-based methods are more efficient in terms of 

transmission and archiving images coded in Joint 

Photographic Experts Group (JPEG) standard to 

the upper node in the VSN agent. A JPEG system 

consists of a pair of encoder and decoder. In the 

encoder, images are divided into non-overlapping 

8×8 blocks, and the DCT coefficients are 

calculated for each one of them. Since the 

quantization of DCT coefficients is a lossy 

process, many of the small-valued DCT 

coefficients are quantized to zero, which 

correspond to high frequencies. The DCT-based 

image fusion algorithms work more properly 

when the multi-focus image fusion methods are 

applied in the compressed domain ‎[26]. In 

addition, in the spatial-based methods, the input 

images must be decoded and then transferred to 

the spatial domain. After implementation of the 

image fusion operations, the output fused images 

must again be encoded ‎[27]. Therefore, the DCT 

domain-based methods do not require complex 

and time-consuming consecutive decoding and 

encoding operations. Therefore, the image fusion 

methods based on DCT domain operate with an 

extremely less energy and processing time. 

Recently, a lot of research works have been 

carried out in the DCT domain. Tang ‎[28] has 

introduced the DCT+Average and DCT+Contrast 

methods for multi-focus image fusion in the DCT 

domain. In the DCT+Average method, a fused 

image is created by a simple average of all DCT 

coefficients of input images. To create the DCT 

coefficients of the output 8×8 block in the 

DCT+Contrast method, the maximum coefficient 

value is selected for all 63 AC coefficients of 

input blocks, and the average DC coefficients for 

all the input image block is selected for DC 

coefficient of the output block. These two 

methods suffer from undesirable side-effects like 

blurring and blocking effects, so the output image 

quality is reduced. 

Most of the DCT domain methods are inspirited 

from the spatial domain methods. Since the 

implementation of all focus measurements in the 

spatial domain is very easy and simple, 

researchers try to implement the algorithms in the 

DCT domain after a satisfactory calculation of the 

focus measurements in the spatial domain. Huang 

and Jing have reviewed and applied several focus 

measurements in the spatial domain for the multi-

focus image fusion process, which are suitable for 

real-time applications ‎[9]. They mentioned some 

focus measurements including variance, energy of 

image‎ gradient‎ (EOG),‎ Tenenbaum‟s‎ algorithm‎

(Tenengrad), energy of Laplacian of the image 

(EOL), sum-modified-Laplacian (SML), and 
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spatial frequency (SF). Their conducted 

experiments showed that EOL of the image gave 

results with a better performance than the other 

methods like variance and spatial frequency. 

Haghighat et al. ‎[27] have calculated variance in 

the DCT domain, and replaced the multi-focus 

image fusion process based on the variance in the 

spatial domain by multi-focus image fusion 

process based upon variance in the DCT domain 

(DCT+Variance). In this method, variance is 

calculated in the DCT domain for all the 8×8 

blocks that constitute the input images. This 

algorithm creates a merged output image by 

selecting the corresponding blocks with the largest 

variance values. In some cases, unsuitable blocks 

are selected for the output image because their 

variance values are very close to each other. 

Phamila has proposed the DCT+AC_Max method 

[29]. It selects the block with more number of 

higher values of the AC coefficient in the DCT 

domain. This method cannot always choose the 

suitable blocks because the number of higher 

values of AC coefficients as a focus criterion is 

invalid when the majority of AC coefficients are 

zero. Hence, it creates an unsuitable selection of 

the focused block. Li et al. ‎[10] have introduced 

multi-focus image fusion based on the spatial 

frequency in the spatial domain. However, the 

experiments conducted in ‎[9] showed that the 

spatial frequency algorithm had a better 

performance than the variance algorithm. Later, 

DCT domain spatial frequency multi-focus image 

fusion (DCT+SF) was introduced by Cao et 

al. ‎[30]. The spatial frequency value is used as a 

focus criterion in this DCT-based method. 

Therefore, this algorithm selects the block with a 

higher value of the spatial frequency that is 

calculated for each DCT representation of the 

blocks. In [31], Sum of Modified Laplacian 

(SML) is used in the DCT domain for fusion of 

multi-focus images. The higher SML value is 

considered as a contrast criterion, and is used for 

block selection in the DCT+SML algorithm. 

These methods (DCT+SF and DCT+SML) are 

similar to the aforementioned prominent methods 

(DCT+Variance and DCT+AC_Max) in terms of 

unsuitable selection of focused blocks; thus it 

suffers from some undesirable side-effects like 

blocking effects and low quality of the output 

image.  

These DCT-based methods use a post-processing 

called consistency verification (CV) in order to 

enhance the quality of the output fused image and 

reduce the error of unsuitable block selection. The 

current CV process does not completely enhance 

the output fused image occasionally. Thus in very 

rare cases, the quality enhancing is declined. 

However, the existing CV processes are also 

associated with the blocking effects. 

1.2. Contributions of this paper 

Due to the problems mentioned for the earlier 

DCT-based methods and possibility of unsuitable 

focused block selection, it is recommended to use 

an efficient and comprehensive DCT-based focus 

criterion with more functionality. Hongmei et 

al. ‎[12] have introduced the multi-focus image 

fusion using EOL for the spatial domain. Pertuz et 

al. ‎[14] have conducted various tests for 36 focus 

measurements, and reported that the Laplacian-

based functions like VOL and EOL have the best 

performance over all the 36 focus measurements 

in normal multi-focus images. However, the 

experiments conducted in ‎[9] show that EOL has 

better results than the variance and spatial 

frequency methods in the spatial domain.   

In this paper, four new efficient focus criteria in 

the DCT domain for multi-focus image fusion 

algorithm are developed. In these new methods, 

the quality of the output image is increased, and 

the error due to unsuitable block selection is 

greatly reduced. Following in this paper: 

 We introduce a method for convolving a 

3×3 mask over the 8×8 block directly in 

the DCT domain. This algorithm in the 

DCT domain reassembles filtering a mask 

with the border replication in the spatial 

domain. Thus the Laplacian mask and 

Gaussian low pass mask could be 

convolved easily on the 8×8 block 

directly in the DCT domain. 

 By artificial blurring the input blocks of 

multi-focus images with Gaussian low-

pass filter, it is possible to measure the 

amount of occurring changes in the blocks 

with the correlation coefficient relation. 

Therefore, we derived an efficient focus 

measurement in the DCT domain by 

calculating the correlation coefficient 

relation in it. Moreover, we improved this 

focus measurement by combining the 

energy in the correlation coefficient 

relation.  

 As the Laplacian of the block was 

achieved easily in the DCT domain by the 

proposed method, we tend to calculate the 

two other powerful focus measurements 

of Laplacian-based functions directly in 
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the DCT domain. Thus this paper 

introduces the EOL and VOL calculations 

completely in the DCT domain.  
 

 Finally, CV as a post-processing in multi-

focus image fusion algorithms is 

enhanced by introducing repeated 

consistency verification (RCV). This 

process greatly enhances the decision map 

for constructing the output fused image, 

and it also prevents the blocking effects in 

the output image. 

The rest of this paper is arranged as what follows: 

In the second section, a complete description of 

the proposed methods is introduced. Then in 

Section 3, the proposed algorithms are assessed 

with the previous prominent algorithms with 

different experiments. Finally, we conclude the 

paper. 

2. Proposed methods 
 

2.1 Preliminaries 

In order to abridge the description of the proposed 

algorithms, two images were considered for image 

fusion process, although these algorithms could be 

used for more than two multi-focus images. We 

assumed that the input images were aligned by an 

image registration method. Figures 1 and 2 show 

two general structures of the proposed methods 

for fusion of the two multi-focus images. In what 

follows, we explain the steps of the proposed 

methods. 

As the general structure of the first proposed 

approach is shown in figure 1, after dividing the 

source images into 8×8 blocks, their DCT 

coefficients are calculated. Then the artificial 

blurred blocks are obtained using the DCT 

representation of 8×8 blocks by the proposed 

DCT filtering method. In this paper, a new 

approach with vector processing is proposed for 

passing the blocks through a low-pass filter in the 

DCT domain. Mathematical calculations of the 

proposed DCT filtering are described in Section 

2.3. It is obvious that the difference between the 

sharp image and its corresponding blurred image 

is more than the difference between the unsharped 

image and its corresponding blurred image. 

Therefore, the block that comes from a part of the 

focused image and has more details is changed 

more when it is passed through a low-pass filter. 

Consequently, the correlation coefficient value 

between the blocks before and after passing 

through a low-pass filter has a lower value for the 

focused block than the non-focused block. 

Therefore, those blocks that are changed more due 

to passing through a low-pass filter have lower 

correlation coefficient values, so they are more 

suitable for selection in the output fused image. 

Following the aforementioned reason, condition 

(1) (given below) is suggested. Suppose that imA 

and imB belong to the focused and non-focused 

area, respectively. Condition (2) is redefined from 

condition (1) using a simple mathematical action.  

( , ) ( , )corr imA imA corr imB imB  (1) 

(1 ( , )) (1 ( , ))corr imA imA corr imB imB    (2) 

On the other hand, the block energy is a useful 

criterion for measurement of the image contrast in 

that region. The main reason could be more 

details of the focused image and its larger 

coefficient value compared with the part of the 

non-focused image. This criterion has a 

significant impact on our algorithm in two stages. 

In the first stage, the energy of input images for 

each divided block is calculated. The block that 

has the highest energy should be selected for the 

output image. This selection is done using 

condition (3). In the second stage, the energy 

criterion can be used for the artificial blurred 

blocks that are obtained from the input blocks 

using condition (4). 

( ) ( )energy imA energy imB  (3) 

( ) ( )energy imA energy imB  (4) 

where, imA,    , imB, and     are the first input 

image block, artificial blurred of first input image 

block, second input image block, and artificial 

blurred of second input image block, respectively. 

A better output image quality is achieved using 

the correlation coefficient criterion for both 

energy measurements of block given in (3) and 

(4). The final condition is expressed as (5) by 

combining conditions (2), (3), and (4). 

( ) (1 ( , ) )

( ) ( )

(1 ( , ) ) ( )

energy imA corr imA imA

energy imA energy imB

corr imB imB energy imB

  

 

 

 (5) 

 

Condition (6), a simple form of condition (5), is 

the condition of the proposed method displayed 

by the Eng_Corr symbol. 

_ ( , ) ) _ ( , ) )Eng Corr imA imA Eng Corr imB imB  (6) 



Amin-Naji & Aghagolzadeh/ Journal of AI and Data Mining, Vol 6, No 2, 2018. 
 

237 

 

Figure 1. General structure of first approach in proposed methods. 

 

Figure 2. General structure of second approach in proposed methods. 

In the second approach of the proposed methods, 

the focused block with two powerful focus 

measurements as EOL and VOL is selected. The 

region of the focused image has more information 

and high contrast. Subsequently, this region has 

more raised and evident edges. The amount and 

intensity of edges in an image are used as a 

criterion to specify the image quality and contrast. 

EOL and VOL are two appropriate measurements 

showing the amount of edges in an image. 

Therefore, the image block that comes from the 

focused area has higher EOL and VOL values 

than the block of the non-focused area. Thus the 

EOL and VOL values are calculated for every 8×8 

block (imA and imB) in the DCT domain. The 

block with higher EOL or VOL values is 

considered as the focused area, and is selected for 

the output image. 

2.2 Convolving a 3×3 mask on a 8×8 block in 

DCT domain 

In order to convolve the 3×3 mask on an 8×8 

block directly in the DCT domain, we have 

proposed a new method by defining 8×8 matrices 

multiplied on the given block [32]. If the size of 

the mask is increased, the quality of the fused 

image by the proposed algorithms will be reduced 

for all kinds of multi-focus images in our 

implemented experiments. Besides this, with 

increase in the size of the mask, the algorithm 

complexity and computation time increase. In 

addition, for 8×8 blocks, 3×3 is very suitable. 5×5 

is very large for an 8×8 block. The size of the 

mask is usually odd due to symmetry, which is 

logic in image processing. Therefore, according to 

the numerous conducted experiments, the 3×3 size 

of the mask is the best one for filtering the 8×8 

blocks in terms of the output fused image quality, 

and also less algorithm complexity. 

A 2D DCT of an N×N block of image b is given 

as (7): 

. . tB C b C  (7) 

where,   and    are the orthogonal matrices 

consisting of the DCT cosine kernel coefficients 

and the transpose coefficients, respectively, and B 
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is the DCT coefficient for the image matrix of b. 

For C, we have: 

1 tC C   (8) 

The inverse DCT of B is defined as (9): 

. .tb C B C  (9) 

Usually, for still images, the correlation between 

pixels in both the horizontal and vertical 

directions is the same. Thus employing a 

symmetric mask is reasonable and justified. We 

assume that the mask has a horizontal and vertical 

symmetry, as (10): 

X Y X 

Mask= Y Z Y 

X Y X 
 

(10) 

Based upon this method, some matrices are 

created, which are transferred to the DCT domain 

only one time after designing for every selected 

mask. They are also used in the block filtering 

process as constant matrices. For implementation 

of the first row of the mask, its first row is passed 

through the block; so matrix t is defined, which is 

multiplied by the block (block×t). Since the first 

row of the mask is not related to the first row of 

the block, the first row of block×t should be zero. 

Thus it is necessary to multiply the lower shift 

matrix (  ) by block×t (   is an 8×8 matrix with 

one on the sub-diagonal, and zero elsewhere). 

 As the first and third rows of the mask are the 

same, for applying the third row of mask on the 

block, the upper shift matrix (  ) is multiplied by 

block×t (   is an 8×8 matrix with one on the 

super diagonal, and zero elsewhere). For 

implementation of the second row of the mask, its 

second row is passed through the block; thus 

matrix s is defined, which is multiplied by the 

block (block×s). Finally, the result of convolution 

of mask and block is defined as (11): 

8 8( ) ( )

( ) ( ) ( )

output l block t u block t

block s lu block t block s

     

      
 (11) 

where, lu is the summation of    and   , and 

matrices t and s are as follow: 
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The result of convolution satisfies the linear 

condition (achieving by zero padding filtering in 

the spatial domain). The DCT representation of s, 

t, lu, and block are defined as S, T, LU, and 

BLOCK, respectively. Equation (12) is 

redefinition of (11) in the DCT domain using (7) 

and (9). 

. .

( . . . . . . . . )

( . . . . . )

. [ ( . . ) . ) ] .

DCT

t

t t t

t t

t

C OUTPUT C output

C LU C C BLOCK C C T C

C BLOCK C C S C

C LU BLOCK T BLOCK S C

 

 



 (12) 

Thus equation (12) could be simplified as 

equation (13): 

( . . ) ( . )DCTOUTPUT LU BLOCK T BLOCK S   (13) 

Besides zero padding, a common method in signal 

processing for signals with a finite duration (e.g. 

images) is repeating the end values. Both the 

symmetrical and unsymmetrical replications are 

the same for a 3×3 mask. Generally, replication in 

signal border gives results better than zero 

padding (more continuous). Zero padding in 

image processing usually may lead to block 

effects in the border areas. In order to create the 

border replication condition on edges of the block, 

we developed some matrices resembling this 

operation in the DCT domain. In order to create 

the border replication condition in the corners of 

the block, matrix u is defined, which is multiplied 

by the block (block×u). In order to select the 

corner elements of the matrix, the corner separator 

matrix (q) is multiplied by block×u. The separator 

matrix, q, is an 8×8 matrix with one only on the 

q(1,1) and q(8,8), and zero elsewhere. However, 
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for the lateral replication condition, matrix v is 

defined. Matrices u and v are given as follow: 

  

(

 
 
 
 
 

           
        
        
        
        
        
        
           )

 
 
 
 
 

   

 

 

  

(

 
 
 
 
 

        
        
        
        
        
        
        
        )

 
 
 
 
 

   

 

The next step is to calculate the border replication 

condition directly in the DCT domain according 

to (14) using calculation of the DCT 

representation of u, v, and q: 

( . . )

( . . ) ( . . )

DCTREPLICATION Q BLOCK U

V BLOCK Q Q BLOCK V



 
 (14) 

where, matrices U, V, and Q are DCT of the 

matrices u, v, and q, respectively. 
 

Finally, the convolved block with the border 

replication condition is achieved directly in the 

DCT domain by summation of (13) and (14) as 

(15): 

_ ( . . )

( . ) ( . . )

( . . ) ( . . )

DCTFiltered Block LU BLOCK T

BLOCK S Q BLOCK U

V BLOCK Q Q BLOCK V



 

 

 (15) 

Although the above convolution manipulation was 

developed for a 3×3 mask and an 8×8 image 

block, it can be extended for any mask and block 

sizes.  

 Gaussian low-pass filtering in DCT domain 

In the first approach of the proposed methods, it is 

necessary to pass the 8×8 blocks through a low-

pass filter, and a 3×3 Gaussian low-pass filter 

with‎ σ=1‎ is‎ used.‎ We tested various low-pass 

filters in a lot of experiments with various kinds 

of multi-focus images. The Gaussian low-pass 

3×3‎mask‎with‎σ=1‎is‎the‎best‎choice for blurring 

8×8 blocks in case of high quality fused image in 

our proposed methods. 

The 2D Gaussian‎function‎with‎σ=1‎is: 

2 2

21
( , )

2

x x

G x y e





  (16) 

According to (16), G(x,y) for x, y=-1, 0, and 1 are 

calculated. With normalizing these values by the 

sum of G(x,y), the 3×3 Gaussian low-pass mask 

with σ=1 is achieved as (18): 

0.0751 0.1238 0.0751 

Gaussian 

Mask= 
0.1238 0.2042 0.1238 

0.0751 0.1238 0.0751 
 

(17) 

For Gaussian filtering of the block in the DCT 

domain, the matrices t, s, u, and v are arranged 

according to (10) and (17). This means that X, Y, 

and Z in (10) and the defined matrices (t, s, u, and 

v) are set to 0.0751, 0.1238, and 0.0751, 

respectively. In the next step, T, S, U, and V (the 

DCT representation of t, s, u, and v) are 

calculated. Finally, the filtered block in the DCT 

domain is calculated by (15). The DCT domain 

matrices of LU, Q, T, S, U, and V for the mask are 

demonstrated in figure 3 for 3×3 Gaussian low-

pass‎ filter‎ with‎ σ=1.‎ Thus     and      which 

are the Gaussian low-pass filtered block of imA 

and imB, respectively, can be calculated directly 

in the DCT domain easily for the DCT+Corr and 

DCT+ENG_Corr methods according to (15). 

 Calculation of Laplacian of a block in DCT 

domain 

The Laplacian of the 8×8 block in spatial domain 

is calculated by the convolving mask (18) and the 

given 8×8 block. 
 

-1 -4 -1 

Laplacian 

Mask= 
-4 +20 -4 

-1 -4 -1 
 

(18) 

 

In order to calculate the Laplacian of the block in 

the DCT domain, the matrices t, s, u, and v are 

arranged according to (10) and (19). In the next 

step, matrices T, S, U, and V, the DCT 

representation of t, s, u, and v, respectively, are 

calculated. Finally, the Laplacian of the block 

(              is calculated according to (15) 

directly in the DCT domain.  
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2.3. Correlation coefficient and energy- 

correlation coefficient calculation in DCT 

domain 

The correlation coefficient between the two N×N 

image blocks, imA and    , is defined as (19) 

[33]: 
 

1 1

0 0

1 1 1 1

0 0 0 0

2 2

( ( , ) ) ( ( , ) )

( ( , ) ) ( ( , ) )

( , )

N N

m n

N N N N

m n m n

imA m n imA imA m n imA

imA m n imA imA m n imA

corr imA imA

 

 

   

   

 

 





 

 (19) 

where, imA(m,n) is the intensity of the         

pixel in image imA,     (m,n) is the intensity of 

the         pixel in image     ,    ̿̿ ̿̿ ̿ is the mean 

intensity value of image imA, and     ̅̅ ̅̅ ̅̿̿ ̿̿ ̿ is the 

mean intensity value of image    . 

In order to derive the correlation coefficient of the 

N×N image blocks of imA and     in the DCT 

domain,                   
      are defined as 

below: 

( , ) ( , )
imAimA imAP i j d i j d   (20) 

( , ) ( , )
imA imA imA

P i j d i j d   (21) 

where,            and     
      are the DCT 

coefficients of N×N image blocks of imA and 

   , respectively. However,  ̅    and   ̅    are 

the mean values of DCT coefficients of N×N 

image blocks of imA and    , respectively. 

Therefore, the correlation coefficient of the two 

N×N image blocks of imA and     can be 

obtained mathematically simply from the DCT 

coefficients according to (22). 

1 1

0 0

1 1 1 1

0 0 0 0

2 2

( , ) ( , )

( , ) ( , )

( , )

N N

i j

N N N N

i j i j

imA imA

imA imA

DCT

P i j P i j

P i j P i j

corr imA imA

 

 

   

   









 

 (22) 

Combining the image energy of imA and     in 

the correlation coefficient relation could improve 

the focus measurement performance. The input 

image is represented by symbol imA, and the 

artificial blurred input image is represented by 

symbol    . The energies of the input images, 

imA and    , are defined as (23) and (24), 

respectively. 

1 1
2

0 0

( ) ( , )
N N

imA

i j

DCTEnergy imA d i j
 

 

  (23) 

1 1
2

0 0

( ) ( , )
N N

imA
i j

DCTEnergy imA d i j
 

 

  (24) 

The second proposed focus measurement 

(Eng_Corr) is calculated using (25) by combining 

(22), (23), and (24), according to condition (5). 

_ ( , ) ( )

(1 ( , )) ( )

DCT DCT

DCT DCT

Eng corr imA imA Energy imA

corr imA imA Energy imA



  
 (25) 

2.4. EOL & VOL calculation in DCT domain 

EOL measures the image border sharpness, and is 

calculated in the spatial domain using (26) [34].  

2( ( , ))
k l

EOL Laplacian k l  (26) 

where, Laplacian(k,l) is the Laplacian of the given 

image block. 

EOL in (26), the summation of entrywise products 

of the elements, can be re-written as (27): 

2( ( , ))

[ ( , ).( ( , )) ]

k l

t

EOL Laplacian k l

trace Laplacian k l Laplacian k l

 
 (27) 

where, trace[.] is the trace of a matrix. 

Since DCT is a unitary transform, if b is a matrix 

and B is its DCT representation, we have: 

( . ) ( . )t ttrace b b trace B B  (28) 

Using (27) and (28), the EOL in DCT domain can 

be written as (29): 

[ .( ) ]

DCT

DCT DCT
t

EOL

trace Laplacian Laplacian


 (29) 

 

where, the              has been calculated 

using the proposed method in Section 2.2 with 

(18). 

In this section, after EOL, the variance of image 

Laplacian (VOL) is calculated in the DCT 

domain. VOL in the spatial domain is calculated 

using (30). 
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1 1
2 2

2
0 0

21
( , )

N N

k l

Laplacian k l
N


 

 

   (30) 

where, μ is the mean value of Laplacian of the 

N×N block. 

However, variance of the N×N block in the DCT 

domain is calculated using (31) ‎[27]. 

21 1
2 2

2
0 0

( , )
(0,0)

N N

DCT

k l

d k l
d

N


 

 

   (31) 

where, d(k,l) is the DCT representation of the 

block. 

In order to calculate the variance of image 

Laplacian in the DCT domain, d(k,l) - used in (31) 

- is replaced with the calculated              in 

Section 2.2. Thus the variance of image Laplacian 

in the DCT domain,       , is derived as (32): 

27 7
2

2

0 0

( , )
(0,0)DCT

DCT

k l

DCT

Laplacian k l
Laplacian

N

VOL

 






 (32) 

2.5. Block selection 

After introducing the proposed DCT domain focus 

measurements (DCT+Corr, DCT+Eng_Corr, 

DCT+EOL, and DCT+VOL), it is possible to 

make decision map M(i, j) for a suitable focused 

block selection in order to construct the output 

image.  

For the DCT+Corr method: 

( , )

1 ( , ) ( , )

1 ( , ) ( , )

DCT DCT

DCT DCT

M i j

if corr imA imA corr imB imB

if corr imA imA corr imB imB











 (33) 

For the DCT+Eng_Corr method: 

_ _

_ _

1 ( , ) ( , )

1 ( , ) ( , )

( , )

DCT DCT

DCT DCT

if Eng corr imA imA Eng corr imB imB

if Eng corr imA imA Eng corr imB imB

M i j













 

(34) 

For the DCT+EOL method: 

1 ( ) ( )

1 ( ) ( )

( , )

DCT DCT

DCT DCT

if EOL imA EOL imB

if EOL imA EOL imB

M i j













 (35) 

Finally, for the DCT+VOL method: 

1 ( ) ( )

1 ( ) ( )

( , )

DCT DCT

DCT DCT

if VOL imA VOL imB

if VOL imA VOL imB

M i j













 (36) 

where i=‎1,‎2‎…
                        

 
 and j= 1, 

2‎…‎
                        

 
. 

For         , the block imA is selected for the 

output fused image, and for          , the 

block imB is selected. 

2.6. Consistency verification (CV) 

In order to improve the quality of the output 

image and reduce the error due to unsuitable block 

selection, CV is applied as a post-processing in 

LU=  Q=  

1.7500 0 -0.3266 0 -0.2500 0 -0.1353 0 
 

0.2500 0 0.3266 0 0.2500 0 0.1353 0 

0 1.3668 0 -0.4077 0 -0.2724 0 -0.0957 
 

0 0.4810 0 0.4077 0 0.2724 0 0.0957 
-0.3266 0 0.9874 0 -0.3266 0 -0.1768 0 

 

0.3266 0 0.4268 0 0.3266 0 0.1768 0 

0 -0.4077 0 0.4197 0 -0.2310 0 -0.0811 
 

0 0.4077 0 0.3457 0 0.2310 0 0.0811 

-0.2500 0 -0.3266 0 -0.2500 0 -0.1353 0 
 

0.2500 0 0.3266 0 0.2500 0 0.1353 0 

0 -0.2724 0 -0.2310 0 -0.9197 0 -0.0542 
 

0 0.2724 0 0.2310 0 0.1543 0 0.0542 
-0.1353 0 -0.1768 0 -0.1353 0 -1.4874 0 

 

0.1353 0 0.1768 0 0.1353 0 0.0732 0 

0 -0.0957 0 -0.0811 0 -0.0542 0 -1.8668 
 

0 0.0957 0 0.0811 0 0.0542 0 0.0190 
 

T_Gaussian=  S_Gaussian=  

0.2552 0 -0.0245 0 -0.0188 0 -0.0102 0 
 

0.4208 0 -0.0404 0 -0.0310 0 -0.0168 0 

0 0.2264 0 -0.0306 0 -0.0205 0 -0.0072 
 

0 0.3734 0 -0.0505 0 -0.0337 0 -0.0118 

-0.0245 0 0.1980 0 -0.0245 0 -0.0133 0 
 

-0.0404 0 0.3264 0 -0.0404 0 -0.0219 0 

0 0.0306 0 0.1553 0 -0.0173 0 -0.0061 
 

0 -0.0505 0 0.2562 0 -0.0286 0 -0.0100 

-0.0188 0 -0.0245 0 0.1050 0 -0.0102 0 
 

-0.0309 0 -0.0404 0 0.1732 0 -0.0168 0 

0 -0.0205 0 -0.0173 0 0.0547 0 -0.0041 
 

0 -0.0337 0 -0.0286 0 0.0903 0 -0.0067 

-0.0102 0 -0.0133 0 -0.0102 0 0.0121 0 
 

-0.0168 0 -0.0219 0 -0.0168 0 0.0201 0 

0 0.0072 0 -0.0061 0 -0.0041 0 -0.0164 
 

0 -0.0118 0 -0.0100 0 -0.0067 0 -0.0269 
 

U_Gaussian=  V_Gaussian=  

0.0806 0 0.1054 0 0.0806 0 0.0436 0 
 

0.2243 0 -0.0650 0 -0.0497 0 -0.0269 0 

0 0.1552 0 0.1315 0 0.0879 0 0.0309 
 

0 0.1669 0 -0.0811 0 -0.0542 0 -0.0190 

0.1054 0 0.1377 0 0.1054 0 0.0570 0 
 

-0.0650 0 0.1451 0 -0.0650 0 -0.0352 0 

0 0.1315 0 0.1115 0 0.0745 0 0.0262 
 

0 -0.0811 0 0.1125 0 -0.0459 0 -0.0161 

0.0806 0 0.1054 0 0.0806 0 0.0436 0 
 

-0.0497 0 -0.0650 0 0.0741 0 -0.0269 0 

0 0.0879 0 0.0745 0 0.0498 0 0.0175 
 

0 -0.0542 0 -0.0459 0 0.0356 0 -0.0108 

0.0436 0 0.0570 0 0.0436 0 0.0236 0 
 

-0.0269 0 -0.0352 0 -0.0269 0 0.0030 0 

0 0.0309 0 0.0262 0 0.0175 0 0.0061 
 

0 -0.0190 0 -0.0161 0 -0.0108 0 -0.0188 

Figure 3. DCT representation of matrices LU, Q, T, S, U, and V for 3×3 Gaussian low-pass filter with σ=1. 
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the last step of the image fusion process. It is 

supposed that the central block of an area in the 

selected blocks for the output image come from 

image B but the majority of neighbouring blocks 

come from image A. This means that the central 

block should belong to image A. Li et al. have 

used the majority filter for the CV process ‎[23]. 

The central block is replaced with the 

corresponding block from image A using a 

majority filter, which is applied on the decision 

map M(i,j). The previous methods in the DCT 

domain (DCT+Variance, DCT+AC_Max, and 

DCT+SF) use averaging low-pass filter as the 

majority filter in their algorithms. For example, an 

averaging mask of size 5×5 is used in the 

simulations. Thus the new decision map is derived 

as below: 

2 2

2 2

1
( , ) ( , 1)

25 k l

W i j M i k j
 

 

     (37) 

For W(i,j) > 0,  the selected block for the output 

image is selected from imA, and for W(i,j) < 0, the 

selected block for the output image is selected 

from imB. 

2.7. Proposed repeated consistency verification 

(RCV) 

Although the CV process improves the decision 

map in most cases, it has a negative effect on 

outcome in some cases. This limitation can cause 

blocking effects on the output fused image. In 

order to remove this weakness and create an 

enhanced decision map, the RCV process is 

suggested. In this method, averaging masks are 

used to have a smooth decision map. Since the 

output of applying averaging mask is multi-

values, it is necessary to use a thresholding 

process to create a desired binary decision map. 

Our investigation shows a two-stage successive 

averaging by masks with sizes of 7×7 and 5×5, 

thresholding with a zero dead zone with values of 

±0.2 and ±0.1, respectively, and finally, applying 

an averaging mask of 3×3 following a soft 

thresholding with values ±0.2 giving better 

results. This method prevents any blocking effect 

on the output fused image, and significantly 

improves the quality of output image. The 

equations used in this method are summarized as 

follow: 
 

Averaging mask with a size of 7×7:  

3 3
1

3 3

1
( , ) ( , 1)

49 k l

M i j M i k j
 

 

     (38) 

Thresholding with values of ±0.2: 

1

2 1

1 ( , ) 0.2

( , ) 1 ( , ) 0.2

0

if M i j

M i j if M i j

otherwise

 


   



 (39) 

Averaging mask with a size of 5×5: 

2 2
3 2

2 2

1
( , ) ( , 1)

25 k l

M i j M i k j
 

 

     (40) 

Thresholding with values of ±0.1: 

3

4 3

1 ( , ) 0.1

( , ) 1 ( , ) 0.1

0

if M i j

M i j if M i j

otherwise

 


   



 (41) 

Averaging mask of 3×3: 

1 1
4

1 1

1
( , ) ( , 1)

9 k l

W i j M i k j
 

 

     (42) 

Soft thresholding with the values ±0.2 for final 
decision: 

1 1

2 2

( , ) 0.2

( , ) 0.2

( ) ( )

( , )

W W

imA if W i j

imB if W i j

imA imB otherwise

F i j

 



 













 (43) 

3. Experimental results and analysis 

The proposed algorithms in this paper were tested 

for different images. The results of the proposed 

methods are discussed and compared with some 

of the state of the art methods e.g. methods based 

on the multi-scale transform like DWT ‎[23], 

SIDWT ‎[24], and DCHWT ‎[25], and the methods 

based on the DCT domain like 

DCT+Average ‎[28], DCT+Contrast ‎[28], 

DCT+Variance ‎[27], DCT+AC_Max ‎[29], 

DCT+SF ‎[30], and DCT+SML [31]. 

 

3.1. Simulation conditions 

The algorithms were coded and simulated using 

the MATLAB 2016b software. The simulation 

MATLAB code of the DCT+Variance method 

was taken from an online database ‎[35], which 

was provided by Haghighat ‎[27]. In the wavelet-

based methods, DWT with DBSS (2,2) and the 

SIDWT with Haar basis, three levels of 
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decomposition are considered and simulated using 

“Image‎ Fusion‎ Toolbox”, provided by Oliver 

Rockinger ‎[36]. However, an online database was 

used for simulation of the DCHWT method ‎[37]. 

The DCT+Average, DCT+Contrast, DCT+ 

AC_Max, and DCT+SF methods were simulated 

using MATLAB with the best performance 

conditions. 
 

To evaluate the proposed methods and compare 

their results with the results of the previous 

outstanding mentioned methods, the experiments 

were conducted on two types of test images. The 

first type of test images is referenced images, and 

their ground-truth images are available. Typical 

gray-scale 512×512 test images, given in figure 4, 

are the referenced-images, which are obtained 

from an online database ‎[38]. The 16 pair multi-

focus test images were generated from eight 

standard test images given in figure 4. For each 

pair, the non-focused conditions were created by 

artificial blurring of images using two disk 

averaging filters of radii 5 and 9 pixels, 

separately. These images are blurred in both right 

and left halves of the images. The second type of 

test images is non-referenced images, and their 

ground-truth images are not available. The real 

multi-focus images were captured with different 

depths of focus in camera. Two well-known non-

referenced‎images‎“Disk”‎580×640‎from‎an‎online‎

database ‎[37]‎ and‎ “Book”‎ 960×1280‎ from‎ an‎

online database ‎[36] were selected. 
 

 

3.2. Performance measurement 

In order to assess the proposed algorithms and 

compare the given results with those of the 

previous algorithms, some different evaluation 

performance metrics of image fusion were used. 

The mean-squared error (MSE) ‎[39, 40], peak 

signal-to-noise ratio (PSNR) [39], and structural 

similarity (SSIM) ‎[41] need the ground-truth 

image for the referenced images. MSE calculates 

the total squared error between the ground-truth 

image and the output fused image, as below [39, 

40]: 

2

1 1

1
[ ( , ) ( , )]

m n

k l

MSE G k l O k l
mn  

   (44) 

where, G(k,l) and O(k,l) are the intensity values of 

the ground-truth image and the output fused 

image, respectively. The values for m and n are 

the size of the images. 

MSE in the signal/image processing can be 

converted to PSNR as (45) but it does not have 

any additional information compared with MSE. 

Anyway, PSNR calculates the maximum available 

power of the signal/image over noise [39], as: 

2

10 ( )10 log
L

MSE
PSNR   (45) 

where, L is an admissible dynamic range of 

image pixel values, and is equal to 2
b
−1 (b=8 

bits).  

Structure similarity (SSIM) index is a criterion to 

measure the structure similarity between images x 

and y as [41]: 

2 2 2 2

1 2

1 2

(2 ) (2 )

( ) ( )
( , )

x x xy

x y x y

c
SSIM x y

c c



 

  

   

 


 
 (46) 

where, µx and µy are the mean values of images x 

and y, respectively; σx and‎σy are the variance of 

images x and y, respectively; and σxy is the 

covariance of images x and y. The c1 and c2 for 8 

bit images are defined as c1=(k1L)
2
 and c2=(k2L)

2
, 

respectively, where k1=0.01, k2=0.03, and L=255. 

 

Q
AB/F

, L
AB/F

, and N
AB/F

 are used for the non-

referenced images provided by Xydeas and 

Petrovic [42, 43]. Consider F as the fused image 

of the two input images A and B. The Sobel edge 

operator is applied for each pixel to get the edge 

strength        and orientation         as 

below (e.g. for input image A): 

2 2g ( , ) ( , ) ( , )yx
A A An m s n m n ms   (47) 

1 ( , )
( , ) tan ( )

( , )

y

A
A x

A

s n m
n m

s n m
   (48) 

where,   
  and   

 
 are the horizontal and vertical 

Sobel templates on each pixel, respectively. 

The relative edge strength and orientation are 

derived as: 

 

Figure 4. Standard gray level test images used for 

simulations. 
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,

, ,

,

,

,

,

F

n m A F

n m n mA

n mAF

n m A

n m

F

n m

g
if g g

g
G

g
otherwise

g





 




 (49) 

/ 2

( , ) ( , )
( , ) 1AF FA n m n m

A n m
 




   (50) 

Using (49) and (50), the edge strength and 

orientation preservation values are derived as: 

( ( , ) )
( , )

1
AF

g g

gAF
g K G n m

Q n m
e







 (51) 

( ( , ) )
( , )

1
AF

AF

K A n m
Q n m

e  


 





 (52) 

The constants   ,   ,   ,   ,   , and    

determine the exact shape of the sigmoid 

functions used to form the edge strength and 

orientation preservation values. Thus the edge 

information preservation is derived as: 

( , ) ( , ) ( , )AF AF AF
gQ n m Q n m Q n m  (53) 

where, 0 ( , ) 1AFQ n m  . The zero value indicates 

the complete loss of edge information, and the 

value 1 indicates no loss of edge information in 

the fusion process.  

Finally, the total gradient information transferred 

from the source images to the fused image 

( /AB FQ ) is calculated as: 

,/

,

, , , ,

, ,

n mAB F

n m

AF A BF B
n m n m n m n m

A B
n m n m

Q w Q w

Q
w w













 (54) 

where, ,
AF
n mQ  and ,

BF
n mQ are weighted by     

  and 

    
 , respectively. The constant value L is 

considered for     
  [    

 ]
 
 and     

  

[    
 ]

 
. 

 

The constant values used in this paper were taken 

from ‎[41] (L=1,          ,       , 

      ,          ,       ,       ). 

 

L
AB/F 

is the fusion loss, which measures the 

gradient information lost during the image fusion 

process, and is calculated as below [43]:  

/

,

,

,

, , , ,

, ,

[(1 ) (1 ) ]

AB F

n m

n m

n m

AF A BF B
n m n m n m n m

A B
n m n m

L

r Q w Q w

w w







  







 (55) 

where 

, , , ,

,

1

0

F A F B

n m n m n m n m

n m

if g g or g g
r

otherwise

  
 


 (56) 

N
AB/F 

is the fusion artefacts or noise [43]. N
AB/F

 

measures the information that is not related to the 

input images but is created as artefacts during the 

image fusion process, and is calculated as: 

,

,/

,

, ,

, ,

( )n m

n mAB F

n m

A B
n m n m

A B
n m n m

N w w

N
w w













 (57) 

where 

,

, , , , ,2 &

0

n m

AF BF F A B

n m n m n m n m n m

N

Q Q if g g g

otherwise



     



 (58) 

In addition, we used the feature mutual 

information (FMI) ‎[44] as (59). The edge feature 

of images was considered for information 

representation in FMI.  

FA FB

F A F B

AB
F

I I
FMI

H H H H
 

 
 (59) 

where, HA, HB, and HF are the information entropy 

of the input images A, B, and the fused image, 

respectively; and IFA and IFB are the amounts of 

feature information that F contains about images 

A and B, respectively. 

These evaluation performance metrics (Q
AB/F

, 

L
AB/F

, N
AB/F

, and FMI) were used for the non-

reference images, i.e. their ground-truth images 

are not available. 

3.3. Fusion result evaluation 

Firstly, in order to demonstrate the advantages of 

the proposed methods over the other ones, the 

proposed methods and the previous ones were 

applied on the 16 pairs of artificial multi-focus 

images generated from the test images given in 

figure 4. The average values for SSIM and MSE 

for the proposed and other methods are listed in 

table 1. The results obtained show that all the four 

proposed methods give better results than the 

other methods. The DCT+Eng_Corr method 

shows the best results in these experiments, i.e. 

the MSE and SSIM values for the DCT+Eng_Corr 
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method are 1.9594 and 0.9950, respectively, 

which are the lowest MSE and highest SSIM 

values among the other values of the other 

methods.  

Secondly, the proposed methods and the other 

ones are evaluated by real multi-focus images 

with different depths of focus in camera.  The 

methods were applied on the various sizes of 

images‎ like‎ “Disk”‎ 580×640‎ and‎ “Book”‎

960×1280, so evaluation results for the 

performance metrics (Q
AB/F

, L
AB/F

, N
AB/F

, and 

FMI) were obtained and listed in table 2. The non-

reference multi-focus image fusion metrics values 

for the realistic images emphasize the advantages 

of the proposed methods over the other ones. The 

output fused images of the proposed methods and 

the‎ „„Book‟‟‎ source‎ images‎ focusing‎ on‎ the‎ left‎

and the right are shown in figure 5. Beside this, 

the magnified output images of the proposed and 

previous methods are shown in figure 5. There are 

some undesirable side-effects like blurring in the 

DCT+Average and DCT+Contrast methods. 

However, the ringing artefacts in wavelet-based 

methods, and blocking effects/unsuitable block 

selection in the DCT+Variance, DCT+AC_Max, 

and DCT+SF methods could be concluded from 

the output image results. All the proposed 

methods could enhance the quality of output fused 

image and reduce unsuitable block selection 

significantly.‎Similarly,‎the‎„„Disk‟‟‎source‎multi-

focus images and the results of the proposed 

methods (DCT+Eng_Corr and 

DCT+Eng_Corr+RCV) are shown in figure 6.  

However, the RCV process and the CV process, 

as the post-processing, are applied on the DCT-

based‎methods‎ for‎ fusion‎ of‎ “Book”‎ images‎ and‎

16 pair multi-focus images that were generated. 

The evaluation performance metrics of CV and 

RCV are listed in table 3. The results obtained 

showed that although CV enhanced the quality of 

the output fused image in most cases, the ability 

of RCV was more than CV in enhancing the 

quality of output fused image. In addition, RCV 

could prevent the unsuitable block selection 

significantly and remove the blocking effects 

completely in the output fused image. The visual 

comparison‎of‎CV‎and‎RCV‎of‎the‎“Book”‎image, 

shown in figure 7 demonstrate this claim. 

In another experiment, the proposed methods and 

the pervious ones were conducted on the “Lena”‎

and‎ “Pepper”‎ multi-focus images. The non-

focused conditions of these multi-focus images 

were created by artificial blurring of images using 

a disk averaging filter of radius 9 pixel. The 

PSNR values for the fused output image of 

different methods are recorded in table 4. It is 

understandable that the PSNR values for the 

results of the latest method‎ for‎“Lena”‎ is infinite 

(∞). Focused‎block‎recognition‎of‎“Lena”‎is‎easy‎

because of the inherent high local correlation 

among pixel values and high contrast between 

adjacent areas, whereas the focused block 

recognition‎ of‎ “Pepper”‎ is‎ harder‎ than‎ “Lena”.‎

Thus we conducted experiments on‎“Pepper”‎as a 

harder quality test in order to compare the 

methods in fair conditions. All proposed methods 

have better results over the previous ones. The 

ground-truth image, multi-focus images of 

“Pepper”,‎difference‎ images‎between‎ the ground-

truth images, fused output images of the proposed 

methods, and other methods are depicted in figure 

7. DCT+VOL+RCV and DCT+Eng_Corr+RCV 

have the best results in the PSNR values, and have 

less image differences in table 4 and figure 7, 

respectively. 

In this paper, four new multi-focus image fusion 

methods are introduced. All the proposed methods 

have significant improvements in the quality of 

the output fused images. In fact, all the DCT-

based fusion methods for JPEG image are less 

time-consuming and suitable for implementation 

in real-time applications. However, it is important 

that which one is faster in order to implement in 

the real-time applications. We conducted an 

average run-time comparison for our proposed 

methods in table 5. Our proposed algorithms were 

performed using the MATLAB 2016b software 

with an 8 GB RAM and Intel core i7-7500 CPU 

processor @ 2.7GHz & 2.9 GHz. According to 

table 5, DCT+Vol has the best run-time (0.110408 

s) for fusion of 512×512 multi-focus images, and 

next, DCT+Eol, DCT+Corr, and DCT+Eng+Corr 

have 0.124598, 0.160410, and 0.173938 s run 

times, respectively. DCT+VOL has a better image 

quality and faster algorithm run-time than 

DCT+Corr & DCT+EOL. According to tables 1, 

2, 3, and 4, the best quality result is for 

DCT+Eng_Corr, and after that is for DCT+VOL. 

Thus we can conclude that DCT+Eng_Corr is a 

better choice if the powerful hardware is 

available, and time-consumption has little 

importance. On the other side, DCT+VOL is a 

better choice if there is a critical need for time and 

energy-consumption. Anyway, all proposed 

methods have significant improvement in quality 

of the output fused images, and are appropriate for 

real-time applications due to implantation in the 

DCT domain. 
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4. Conclusions  

In this paper, four new multi-focus image fusion 

methods were introduced completely in the DCT 

domain. By proposing an algorithm for 

convolving a mask on the 8×8 block directly in 

the DCT domain, we could calculate the image 

Laplacian and image low-pass filtering in DCT 

domain. Thus two powerful Laplacian-based 

focus measurements, VOL and EOL were 

implemented in the DCT domain. Two other 

powerful DCT focus measurements, DCT+Corr 

and DCT+Eng_Corr, were introduced. These 

methods measure the occurring changes in passing 

image blocks through the low-pass filter in the 

DCT domain. In addition, we substituted CV post-

processing with RCV. This replacement improved 

the quality of the output fused image significantly 

and prevents unsuitable block selection and 

blocking effects in the output fused image. We 

conducted a lot of experiments on various types of 

multi-focus images. The accuracy of the proposed 

methods is assessed by applying the proposed 

algorithms and other well-known methods on the 

several referenced images and non-referenced 

images. However, evaluation of different methods 

was done using various evaluation performance 

metrics. The results obtained show the advantages 

of the proposed algorithms over some precious 

and the state of art algorithms in terms of quality 

of output image. In addition, due to a simple 

implementation of the proposed algorithms in the 

DCT domain, they are appropriate for use in real-

time applications. 

 

 

Table 1. MSE and SSIM comparison of various image 

fusion methods on reference images. 

Methods 

 

Average values for 16 pairs 

images created from image 

shown in Fig. 4 

MSE SSIM 

DCT+Average [28] 65.1125 0.9164 

DCT+Contrast  [28] 23.0788 0.9647 

DWT [23] 19.2411 0.9619 

SIDWT [24] 15.5693 0.9641 

DCHWT [25] 4.7756 0.9902 

DCT+Variance [27] 17.2293 0.9720 

DCT+AC_Max [29] 4.1520 0.9917 

DCT+SF [30] 5.6848 0.9896 

DCT+SML [31] 9.8444 0.9828 
 

DCT+ EOL (proposed) 
 

2.5487 0.9944 

DCT+VOL (proposed) 2.5486 0.9944 

DCT+Corr (proposed) 5.2722 0.9921 

DCT+Eng_Corr (proposed) 1.9594 0.9950 

 

Table 2. QAB/F, LAB/F, NAB/F, and FMI comparison of various image fusion methods on non-referenced images. 

Methods 

 

              “BOOK” 
  

              “DISK” 

QAB/F LAB/F NAB/F FMI  QAB/F LAB/F NAB/F FMI 

DCT+Average [28] 0.4985 0.5002 0.0025 0.9075  0.5187 0.4782 0.0063 0.9013 

DCT+Contrast  [28] 0.6470 0.2384 0.3736 0.9074  0.6212 0.2554 0.3629 0.8981 

DWT [23] 0.6621 0.2294 0.3569 0.9117  0.6302 0.2552 0.3362 0.9039 

SIDWT [24] 0.6932 0.2637 0.1279 0.9122  0.6694 0.2764 0.1564 0.9049 

DCHWT [25] 0.6684 0.3014 0.0705 0.9123  0.6529 0.3140 0.0789 0.9075 

DCT+Variance [27] 0.7210 0.2660 0.0277 0.9135  0.7165 0.2612 0.0478 0.9070 

DCT+AC_Max [29] 0.7081 0.2781 0.0294 0.9136  0.6763 0.2910 0.0696 0.9057 

DCT+SF [30] 0.7151 0.2757 0.0197 0.9148  0.7213 0.2600 0.0415 0.9086 

DCT+SML [31] 0.6960 0.2928 0.0241 0.9147  0.6774 0.3074 0.0324 0.9080 
 

DCT+ EOL (proposed) 
 

0.7283 0.2620 0.0206 0.9153  0.7280 0.2522 0.0425 0.9094 

DCT+VOL (proposed) 0.7284 0.2619 0.0207 0.9153  0.7285 0.2519 0.0421 0.9094 

DCT+Corr (proposed) 0.7281 0.2622 0.0207 0.9153  0.7246 0.2541 0.0456 0.9087 

DCT+Eng_Corr (proposed) 0.7284 0.2622 0.0202 0.9155  0.7288 0.2530 0.0391 0.9094 
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(a)                                                              (b)                                                                (c) 

                             

                                          (d)                                                              (e)                                                                  (f) 

       

               (g)                         (h)                            (i)                            (j)                              (k)                            (l)                             (m) 

                     

                               (n)                            (o)                            (p)                           (q)                            (r)                             (s) 

Figure 5. Source images “Book” and fusion results. (a) First source image with focus on the right. (b) Second source image 

with focus on the left. (c) DCT + EOL (proposed) result. (d) DCT+VOL(proposed). (e) DCT+Corr(proposed). (f) 

DCT+Eng_Corr (proposed).  (g), (h), (i), (j), (k), (l), (m), (n), (o), (p), (q), (r), and (s) are the local magnified versions of 

DCT+Average, DCT+Contrast, DWT, SIDWT, DCHWT, DCT+Variance, DCT+Ac_Max, DCT+SF, DCT+SML, 

DCT+EOL(proposed), DCT+VOL(proposed), DCT+Corr(proposed), and DCT+Eng_Corr (proposed), respectively. 

 

 

 

 

 

    

                          (a)                                                        (b)                                                    (c)                                                      (d) 

Figure 6. Source images “Disk” and fusion results. (a) First source image with focus on the right. (b) Second source image 

with focus on the left. (c) DCT+Eng_Corr (proposed). (d) DCT+Eng_Corr+RCV (proposed). 
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Table 3. Comparison between CV and RCV post-processing algorithms. 

Methods 

 

Average values for 16 pair 

image created from image 

shown in Fig. 4 

  

 

“BOOK” 

MSE SSIM  QAB/F LAB/F NAB/F FMI 

DCT+Variance+CV [27] 2.8536 0.9961 
 

0.7222 0.2753 0.0056 0.9151 

DCT+AC_Max+CV [29] 1.3784 0.9972 
 

0.7180 0.2778 0.0095 0.9157 

DCT+SF+CV [30] 2.1456 0.9968 
 

0.7169 0.2796 0.0080 0.9159 

DCT+SML+CV [31] 2.3901 0.9959 
 

0.7187 0.2780 0.0072 0.9163 

 

DCT+ EOL+CV (proposed) 
 

1.0720 0.9976 
 

0.7271 0.2714 0.0036 0.9162 

DCT+VOL +CV(proposed) 1.0735 0.9976 
 

0.7278 0.2708 0.0033 0.9163 

DCT+Corr+CV (proposed) 1.7408 0.9974 
 

0.7280 0.2706 0.0033 0.9163 

DCT+Eng_Corr+CV (proposed) 0.8329 0.9979 
 

0.7285 0.2701 0.0030 0.9163 

DCT+VOL+RCV (proposed) 0.8491 0.9978 
 

0.7290 0.2695 0.0024 0.9164 

DCT+Eng_Corr+RCV (proposed) 0.6623 0.9980 
 

0.7301 0.2690 0.0019 0.9165 

 

       

(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

      

(m) (n) (o) (p) (q) (r) 

Figure 7. Source images and multi-focus images of “Pepper”, and difference images between ground-truth image and fused 

output images of proposed methods and other methods. (a) Ground-truth image. (b) First source image with focus on the right. 

(c) Second source image with focus on the left. (d) DCT+Average. (e) DCT+Contrast. (f) DWT. (g) SIDWT. (h) DCHWT. (i) 

DCT+Variance+CV. (j) DCT+Ac_Max+CV. (k) DCT+SF+CV. (l) DCT+SML+CV. (m) DCT+EOL+CV (Proposed). (n) 

DCT+VOL+CV (Proposed). (o) DCT+Corr+CV (Proposed). (p) DCT+Eng_Corr+CV (Proposed). (q) DCT+VOL+RCV 

(Proposed). (r) DCT+Eng_Corr+RCV (Proposed). 
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