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Abstract

Usually the important parameters in the design and implementation of combinational logic circuits are the
number of gates, transistors, and levels used in the design of a circuit. In this regard, various evolutionary
paradigms with different competency have recently been introduced. However, while being advantageous,
evolutionary paradigms also have some limitations including a) lack of confidence in reaching the correct
answer, b) long convergence time, and c) restriction on the tests performed with a higher number of input
variables. In this work, we implement a genetic programming approach that given a Boolean function,
outputs an equivalent circuit such that the truth table is covered, and the minimum number of gates (and to
some extent, transistors and levels) are used. Furthermore, our implementation improves the aforementioned
limitations by incorporating a self-repairing feature (improving limitation a); efficient use of the conceivable
coding space of the problem, which virtually brings about a kind of parallelism and improves the
convergence time (improving limitation b). Moreover, we apply our method to solve the Boolean functions
with a higher number of inputs (improving limitation c¢). These issues are verified through multiple tests, and

the results obtained are reported.
Keywords: Genetic

1. Introduction

With the emergence of new methods for the
optimization problems, the research works in the
design of combinatorial logic circuits have also
gained a boost. This trend has paved the arena for
entering evolutionary paradigms as one of the
successful models for solving the optimization
problems, in general, and optimization of
combinational logic circuits, in particular.

In this paper, we present a method based upon
genetic programming that efficiently utilizes the
coding space of the logical circuits to accelerate
the convergence time of the solutions. As a result,
the cases we tested led to less-gate designs (with
smaller number of transistors and levels)
compared to the earlier works. The distinguishing
facets of our approach are the utilization of a new
encoding for the logical circuits and self-repairing
ability so that the program will be able to recover
from incomplete answers. These are utilized along
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with a proper evaluation function and selection
strategy. Applying these features to several test
cases shows that the proposed approach is able to
achieve satisfactory results in terms of the usual
design criteria.

Our work and its achievements will be presented
as what follow. In Section 2, we briefly review
some earlier works. Section 3 begins with a brief
description of genetics programming (GP) and
continues with our implementation for the design
of combinational logic circuits including the
appropriate coding, evolutionary operators, and so
on. In Section 4, the results of applying our
approach to a series of previously studied circuits
as well as the new ones are reported. Finally,
Section 5 closes the paper with conclusions and a
few suggestions for further research.

2. Related works
One of the classical methods implemented to
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simplify digital functions, as taught in textbooks,
is the basic Boolean manipulation techniques.
These methods, which mainly consist of factoring
and removing variables, could lead to a rather
straightforward approach of Karnaugh Maps [15].
While the Karnaugh Maps is effective in solving
problems with a few variables, problems with
more  variables  require  computer-based
approaches such as Quin maccLausky [16]. With
an increase in the number of design variables and
constraints, the complexity of the design process
increases. This fact along with a growth in the use
of the computational intelligence for the
optimization problems has paved the way for
applying evolutionary computation paradigms to
the design of electronic and logical circuits [3,4].
Earlier works in applying the evolutionary
procedures to the design of logical circuits goes
back to the application of genetic algorithm (GA)
and genetic programming (GP) [1,5], where the
emphasis was on the mere generation of circuits
rather than the optimization concerns. On the
other hand, others performed a comparison
between the evolutionary procedures in terms of
their ability in convergence. For example, [13]
and [14] compare GP and GA, and show that GA
may prematurely converge to non-local optima,
while GP has a greater chance to find the best
solutions.

In [10], a so-called Cartesian Genetic
Programming (CGP) method has been proposed
for the design of combinatorial logical circuits. In
this work, instead of using a tree structure, which
is usually used in GP, arrays of strings are used
for genotypes, which is more effective in
achieving optimal solutions. In a similar manner
to CGP, a methodology has been proposed in
[12], which is more inclined toward the
implementation of Boolean functions rather than
focusing on the least gates designs. In [11], GP
has been employed for the design of
combinatorial logical circuits considering the least
number of gates, transistors, and levels. However,
there are some limitations. First, the only gates
used are the NAND ones. Secondly, there is no
concern what so ever regarding the rate of
convergence of the program. Thirdly, the results
obtained are only compared with the manual
designs. Finally, the evaluations reported are
limited to functions with four variable inputs.In
the current work, our goal was to implement the
logical functions with the minimum number of
gates (and to some extent, transistors and levels).
At the same time, we tried to improve some

356

defects and shortcomings seen in similar works
such as low convergence rate (number of
generations to get to the answer), not reaching the
desired design, high populations for achieving the
desired results, and no full coverage of the truth
table.

3. Implementation

3.1. Genetic programming

Genetic programming (GP) is one of the several
evolutionary paradigms available for solving the
optimization problems via computers. In this
approach, first of all, an initial population of
solutions or computer programs, each of which is
a potential solution to the problem, is created.
Then each of these candidate solutions is
evaluated versus a so-called fitness function in
order to measure its fitness. The more fit a
solution is, the more chance is given for being
selected in the next generation.
Then through applying the cross-over and
mutation operations, GP would produce a new
generation of solutions from a previously elected
one. These steps are repeated in GP until a
convincing solution is obtained or a certain
number of generations are reached.

Since how we encode the conceivable solution
space would significantly affect the accuracy as
well as the speed of convergence, in what follows
we explain our encoding scheme.

3.2. Encoding

As mentioned in the very beginning, GP starts
with a population of initial solutions that are
usually generated randomly. Each of these
candidate solutions is essentially a combinatorial
circuit that is made up of a number of logical
gates. In practice, each candidate solution circuits
needs to be properly defined for the
implementation of GP. This process is called
encoding of the solution space. One way to do
encoding is for each solution to be individually
coded and entered into the GP search process.
This creates a large number of independent small
data chunks, where evolutionary operations such
as cross-over, mutation, and evaluation of the
candidate solutions would be independently
applied to these small items. This approach results
in a lengthy GP implementation. On the other
hand, we could encode several logic circuits as a
single candidate solution for the implementation
of GP and aggregately apply the evolutionary
operations. This approach speeds up the search
cycle by introducing a kind of parallelism in the
implementation. For this purpose, several
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candidate solutions are gathered in a 2D array,
where the number of rows determines the number
of solutions and the number of columns
determines the levels used in the resulting circuit.
This is illustrated in figure 1 for a 5*5 array. In
this figure, all the evolutionary operations are
applied simultaneously to the 5 solutions. Each
element of the array is itself a 1D array, where the
numbers in the array indicate the type of gates
used together with the inter-connections of their
inputs and outputs to the other gates (1D array
elements) in the main array. In this configuration,
the input of each element is allowed to come only
from the previous stage and the last column
represents the possible outputs.

[2.0,3,0,2] [1,0,1,0,0] [2.24,15] [23.,1,3,3] [5.1,2,2,2]
[2.0,5,0,5] [3,1,20,1] [2.23,15] [32:4,1,3] [4320,2]
[40,1,04] [4,1313] [525.20] [53.21,1] [2.323,0]
[3.0,4,0,2] [1,0,1,0,0] [3.24,0,2] [21,1,0,3] [2.4,2,4,0]

[4,0,4,0,3] [3,02,1,2] [1,2,5,0,2] [5,1,5,1,0] [4,1,5,4,5]
Figure 1. A typical array of 5 candidate solutions.

As it could be seen in figure 1, each element in
the array is composed of five numbers with
specific meanings. The first and second numbers
represent the row and represent the row and
column that one of the inputs of the gate should
be connected, while the third and fourth numbers
represent the row and column that the other input
of the gate should be connected (based on two
inputs gates). We interpreted the numbers 10, 20,
30, 40, ... as the main input variables A, B, C, D,

. The fifth number shows the type of gate
according to the equivalences: WIRE =0, AND =1,
OR =2, XOR =3, NAND =4, NOR =5.

According to the configuration in figure 1 and
depending on from which row of the last column
we take the output, 5 combinatorial logic circuits
are possible as the candidate solutions. For
example, if we take the output from the first row
of the last column, the circuit of figure 3a is
obtained. In this figure, the element [512 2 2] in
the first row and the fifth column is the output.
This element is an OR gate whose first input
comes from the output of the gate in the fifth row
and the first column, while its second input comes
from the output of the gate located in the second

357

row and the second column. The situation is better
visualized in figure 2, where the inter-connections
for this OR gate is drawn up to the main input
variables (A, B, C, ...).

When this protocol is applied to all the rows of
the last column, 5 circuits in figure 3 are obtained.

C1 C2 C3 | C4 C5
22
R1 ;:i:>h
51
[51222]
20=B
R2 ;DJ
31
[31201]
40=D
R3
10=A
[40104]
R4
40=D
es | T
40=D
[40403]

Figure 2. Circuit resulting from first row of figure 1.

3.3. Fitness function

Figure 3. Equivalent circuits for array of figure 1. Last
column and a) first row as output; b) second row as
output; c) third row as output; d) fourth row as output;
e) fifth row as output.

An important factor influencing the success of GP
iS an appropriate evaluation function that
determines the fitness of possible solutions for
their respective effectiveness in the next
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population. According to the common criteria of
optimality for combinational logic circuits
including having minimum number of gates and
maximum coverage of the truth table, it is natural
to consider these criteria in the definition of the
evaluation function. Accordingly, the evaluation
function would be a weighted sum of the number
of false results (compared to the truth table) and
the number of gates as in (1).

(10Xerrprs)+ (gates)
FF = 2" 31
11 1)

In this equation, in is the number of inputs. Errors
is the number of errors of the output of the
solution circuit with respect to the truth table.
Gates is the number of gates used in the proposed
circuit. The fitness function is designed so that its
values are between 0 and 1. The more its value is
close to zero, the more would be the fitness of the
proposed solution. Nevertheless, we use the value
1-FF in our drawings such that the more close we
get to the value of 1, the proposed solution would
be more successful.

While the evaluation function in (1) targets
solutions with the lowest number of gates, the
number of columns in the array of solutions
specifies the maximum number of levels of the
solution. Therefore, we can use the number of
columns in the array of solutions as a parameter
whereby we allow it to vary between 1 and a
maximum. For each value of the parameter for
which the optimal solution is found such that it
covers the truth table completely, we stop and the
next values will not be tried. As a result, the
maximum number of levels of the designs would
be controllable. Note that for a specific choice for
the number of columns, our approach still outputs
circuits with less level than the number of
columns. Thus in the evaluation tests that come in
Section 4, we fix the number of columns to 5.
Therefore, with this approach and using the
NAND, NOR, and XOR gates for which the
number of employed transistors are compared in
table 1, our implementation targets the circuits
with a minimum number of gates, levels, and
transistors.

3.4. Selection and evolution of generations

After the effectiveness of each chromosome in the
initial  population was calculated, better
chromosomes of the population should be selected
as the parents of the next generation. In order to
maintain the diversity of the next generation,
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while keeping the elite chromosomes, the roulette
wheel and elitism selection approaches are being
used together to select the parents for the next
population. Then the wusual cross-over and
mutation operations would be applied to create a
new generation.

Table 1. CMOS gate characteristics.

Gate Gate Gate symbol Area Number of
type type (um) transistor
code

0 Wire 0 0

1 NOT [: 1728 2

2 AND :D_ 2880 6

3 OR :D_ 2880 6

4 NAND :D°_ 2304 4

5 NOR :D°_ 2304 4

6 XOR jD_ 4608 9

7 XNOR :)DO_ 5184 9

4. Evaluation

In this section, we illustrate our implementation of
GP and evaluate its performance via Boolean
functions. We also compare our results with the
related works.

A B C

) >
B _‘ F1

) Lo

Figure 4. Circuit for F1.

4.1. Test Functions
Test 1: A function with three variables:

F1(A,B,C) =3 (3,5,6)

The optimized circuit is shown in figure 4. The
cnvergence diagram for the circuit is shown in
figure 5. The first point to note is a fast
convergence process (in generation 10), as could
be seen in figure 5. The second point is depicted
in table 2. As it could be seen, using our approach,
4 gates and 26 transistors are used for the circuit
in 3 levels.
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Table 2 compares the results of other works. Note
that the Human Designer 1 (HD1) uses the
Karnaugh Maps plus Boolean algebra, whereas
the Human Designer 2 (HD2) uses the Quine-
McCluskey Procedure.

As it can be seen in this table, compared to the
classic methods, the proposed method reduced the
average number of gates and transistors by 44%
and 35%, respectively, and also has some
advantages over other approaches such as MGA
[8] and NGA [6].

fitness
o
(4]

MAX Fittness
0.1+ —+— Avg Fittness
S Min Fitness

0 10 20 30 40 50 60 70

Generation number

Figure 5. Convergence diagram for Fy,

Table 2. Comparison of proposed method vs. similar approaches in terms of general design parameters for function F;.

Number of Number of Number of Optimized function Method
transistors gates
Levels

3 36 5 F=C.(A@®B)+B.(A®C) HD1(KM)[8]
4 35 6 F=A".B.C+A.(BGC) HD2(QM)[8]
4 32 5 F=(C+B).(B&(APC))’ NGA[6]
3 27 4 F=(A+B).C(A.B) MGA[8]
3 26 4 F={[(BC)PA]+B+C)'}" our approach

Test 2 : A function with 4 variables
F.(A,B,C.D)=> (0,1,3,6,7,8,10,13).

Figure 6 shows the designed circuit using the
proposed approach.
As it could be seen in figure 6, the circuit is

A B C

)_ F2
1 >

Figure 6. Circuit for F,,

realized by 6 gates and 38 transistors in three
levels. Table 3 (Human Designer 1 uses the
Karnaugh Maps plus Boolean algebra to simplify
the circuit, whereas Human Designer 2 uses the
Sasao method [7]) also compares the results in

terms of the optimal circuit parameters.
Decreasing the number of gates, transistors, and
levels is evident. The convergence diagram for the
circuit for function F, is shown in figure 7. A fast
convergence process is seen in generation 37,
though due to the increase in the number of inputs
and function’s complexity, the process is lengthier
compared to F;.

fitness

MAX Fittness
0.1F —+—Avg Fittness

. . . ©— Min Fitness )
0 20 an AN a0 100

Generation number

Figure 7. Convergence diagrams for function F,.
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Table 3. Comparison of proposed approach vs. other approaches in terms of general design parameters for function F,.

Number of Number of Number Optimized function Method
levels transistors of gates
4 56 11 F=((A".C)®(B’.D)+(C".D).(ABB") HD1(KM)[8]
5 65 12 F=C'@®D'B'®CD'A'GC'D'B HD2(sasao)[8]
5 61 10 F=(B.C'.D)®((B+D)DAD((C+D)+A)))’ NGA[6]
5 47 7 F=((B®(B.C))D((A+C+D)DA)") MGA[8]
3 38 6 F=((C+D).A)®((C.D)".(CHB))’ our approach

Test 3: A functions with 4 variables
Fs(A,B,C,.D)=> (0,4,5,6,7,8,9,10,13,15).

The designed circuit for this function using the
proposed approach is shown in figure 8. The
circuit is implemented by 5 gates and 30
transistors in 4 levels.
Table 4 shows the comparison results as well.

D

fitness

'?‘ ? v o MAX Fittness
—)) e 01 —+— Avg Fittness
[ S—/ \_l—: ' r r r © Mjn Fitness r
[ . j:)D 0 20 40 60 80 100
)] Do — Generation number
_Do Figure 9. Convergence diagram for F3,
Figure 8. Circuit for F3,
Table 4. Comparison of proposed method vs. similar approaches in terms of general design parameters for function F.
Numbe Number of Number of Optimized function Method
r of transistors gates
levels
4 52 9 F=((A@®B)®((A.D).(B+C)))+((A+C)+D)’ HD1(KM)[8]
5 44 10 F=A'B+A(B'D'+C'D) HD2(QM)[8]
4 47 7 F=((A@B)®A.D)+(C+(ADD))’ NGA[6]
4 47 7 F=((A@B)®DA.D)+(C+(ADD))’ MGA[8]
4 39 5 F=((A@D).C) D{[(A@D)+C]+B}" Our approach

From table 4, one can conclude that compared to
the other methods, our approach has achieved a
design by an average of 25% less gates, less
transistors, and thanks to less levels it produces
less propagation delay. In figure 9, the
convergence diagram for function F; is drawn. It
reaches the solution in just 18 generations, which
is faster compared to F, in spite of having more
minterms. This is partially due to the type of
minterms in the functions and also the inherent
random factors employed in the GP process.
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Test 4: A function with 5 variables

F4(A3B:C3D5E):Z
(0,3,5,6,9,12,15,16,19,21,22,25,28,31)

A straightforward circuit for the implementation
of this function is shown in figure 10. Also the
result of applying our GP approach to this
function is shown in figure 11. The pace of the
convergence is also shown in figure 12. The final
solution for F4 is reached in generation 58, whose
5 variables and number of minterms explain this
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lengthier convergence compared to the previous
test functions.

AB C D E

vIv|y

]

Figure 10. Circuit for F.

o>
* 0
.0
)
*M

)

) o1

Figure 11. Designed circuit for F, using proposed
approach.

fitness

0.2

MAX Fittness

0.1 —+— Avg Fittness

©—Min Fitness

0 20 40 60 80 100
Generation Number

Figure 12. Convergence diagrams for F,.
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5. Self-Repairing

In many cases, evolutionary paradigms might get
close to the optimized answers but still have
unacceptable errors even with increase in the
number of iterations, i.e. the resultant circuit does
not fully cover the truth table. In order to
overcome this problem (when the rows of the
truth table are not properly covered), the
following procedure is used to modify the circuit
until the truth table is fully covered:

Step 1: The program outputs a circuit (Fgp) that
(partially) covers the truth table (F+7).

Step 2: A modification function Fcorg IS Obtained
as follows:

FCORR = FGP ® FTT ()
If Fcorr equals zero, the output circuit fully
covers the truth table, and thus there is no need for
a modification circuit; else:

Step 3: Fcorr iS fed to the program as a new input
as Fr (NEW)

FTT (NEW ) = FCORR (3)

Then the program will design a circuit Fgp(NEW)
The final output Fgp(final) is obtained using:

F. (final) =F,, ®F,, (NEW ) (4)
These are shown in figure 13.
FGP
) P ) FTE PRLLINGTO | FePEw)
F—/ -
PROGRAM o

Figure 13. Block diagram for optimized circuit.

Test 5: A function with four variables.
F5(A,B,C,D) =>1(1,2,3,7,9,10,11)

Frr=[0111000101110000]

Here, F5 and F; indicate the same function. The
former shows the minterms and the latter shows
the truth table. The circuit is shown in figure 14.
Here are the outputs for this example:

Frr 0111000101110000
Fep 0111000001110000
Fcorr 0000000100000000
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s >
e (0
s O
s O

\/

|

Figure 14. Circuit for Fg with one error.

) o

The repair process for the circuit starts with Fcorg
as the new input Fr+ (NEW) is fed into the
optimization process. The program gives the
output circuit Fgp(NEW) in figure 15.

B CD
" 9 v

] _/_)‘70 FGP(NEW)

 —

Figure 15. Repairing circuit for Fg (Fgp(NEW) ).

Figure 16. Final circuit for Fs.

Finally, XORing this circuit with the original
circuit (Fep@Fcp(NEW)) gives an error-free
circuit depicted in figure 16.

6. Conclusions and Suggestions

In this paper, we implemented a GP approach for
optimizing ~ combinational ~ logic  circuits.
According to a number of assessments, the
proposed approach shows its effectiveness with
respect to the usual design criteria such as the
number of gates and transistors.
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Also the effective usage of the coding space of
possible answers makes an inherent paralleling in
the evaluation steps of the GP, which in turn
speeds up the convergence process of our
approach. Besides, using this strategy avoids
unnecessary computation to be imposed on the
program. Since the number of columns in solution
arrays indicates the maximum levels of the output
circuits, some flexibility comes with the
implementation. For example, the program could
design a wider circuit (less levels) instead of a
lengthier one (more levels). Accordingly, and by
using the NAND, NOR, and XOR gates, our
implementation will target the designs with a
minimum number of gates, transistors, and levels.
In the selection step, using a roulette wheel
selection along with an elite one guarantees a
sufficient dispersion in the next generation, while
transfers a number of best parents to the next
generation without any changes. Furthermore, a
self-repairing feature produces more truthful
circuits in terms of the coverage of the truth
tables.

Optimization of the combinational logic circuit
with feedback or memory elements could be the
next step to test the applicability of our method.
Also while some progresses are achieved in
programs for the optimization of circuits with
higher number of inputs, providing a balance
between the number of inputs and an acceptable
accuracy and convergence time is still a gorge for
evolutionary approaches, and thus could be
considered as an opportunity in the future works.
In this regard, hybrid paradigms for multi-
objective problems such as the one proposed in
[17] could be promising.
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