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Abstract 

Usually the important parameters in the design and implementation of combinational logic circuits are the 

number of gates, transistors, and levels used in the design of a circuit. In this regard, various evolutionary 

paradigms with different competency have recently been introduced. However, while being advantageous, 

evolutionary paradigms also have some limitations including a) lack of confidence in reaching the correct 

answer, b) long convergence time, and c) restriction on the tests performed with a higher number of input 

variables. In this work, we implement a genetic programming approach that given a Boolean function, 

outputs an equivalent circuit such that the truth table is covered, and the minimum number of gates (and to 

some extent, transistors and levels) are used. Furthermore, our implementation improves the aforementioned 

limitations by incorporating a self-repairing feature (improving limitation a); efficient use of the conceivable 

coding space of the problem, which virtually brings about a kind of parallelism and improves the 

convergence time (improving limitation b). Moreover, we apply our method to solve the Boolean functions 

with a higher number of inputs (improving limitation c). These issues are verified through multiple tests, and 

the results obtained are reported. 

Keywords: Genetic Programming, Logic Circuits, Design, Optimization.

1. Introduction  

With the emergence of new methods for the 

optimization problems, the research works in the 

design of combinatorial logic circuits have also 

gained a boost. This trend has paved the arena for 

entering evolutionary paradigms as one of the 

successful models for solving the optimization 

problems, in general, and optimization of 

combinational logic circuits, in particular. 

In this paper, we present a method based upon 

genetic programming that efficiently utilizes the 

coding space of the logical circuits to accelerate 

the convergence time of the solutions. As a result, 

the cases we tested led to less-gate designs (with 

smaller number of transistors and levels) 

compared to the earlier works. The distinguishing 

facets of our approach are the utilization of a new 

encoding for the logical circuits and self-repairing 

ability so that the program will be able to recover 

from incomplete answers. These are utilized along 

with a proper evaluation function and selection 

strategy. Applying these features to several test 

cases shows that the proposed approach is able to 

achieve satisfactory results in terms of the usual 

design criteria. 

Our work and its achievements will be presented 

as what follow. In Section 2, we briefly review 

some earlier works. Section 3 begins with a brief 

description of genetics programming (GP) and 

continues with our implementation for the design 

of combinational logic circuits including the 

appropriate coding, evolutionary operators, and so 

on. In Section 4, the results of applying our 

approach to a series of previously studied circuits 

as well as the new ones are reported. Finally, 

Section 5 closes the paper with conclusions and a 

few suggestions for further research. 

 

2. Related works 

One of the classical methods implemented to
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simplify digital functions, as taught in textbooks, 

is the basic Boolean manipulation techniques. 

These methods, which mainly consist of factoring 

and removing variables, could lead to a rather 

straightforward approach of Karnaugh Maps [15]. 

While the Karnaugh Maps is effective in solving 

problems with a few variables, problems with 

more variables require computer-based 

approaches such as Quin maccLausky [16]. With 

an increase in the number of design variables and 

constraints, the complexity of the design process 

increases. This fact along with a growth in the use 

of the computational intelligence for the 

optimization problems has paved the way for 

applying evolutionary computation paradigms to 

the design of electronic and logical circuits [3,4].  

Earlier works in applying the evolutionary 

procedures to the design of logical circuits goes 

back to the application of genetic algorithm (GA) 

and genetic programming (GP) [1,5], where the 

emphasis was on the mere generation of circuits 

rather than the optimization concerns. On the 

other hand, others performed a comparison 

between the evolutionary procedures in terms of 

their ability in convergence. For example, [13] 

and [14] compare GP and GA, and show that GA 

may prematurely converge to non-local optima, 

while GP has a greater chance to find the best 

solutions.  

In [10], a so-called Cartesian Genetic 

Programming (CGP) method has been proposed 

for the design of combinatorial logical circuits. In 

this work, instead of using a tree structure, which 

is usually used in GP, arrays of strings are used 

for genotypes, which is more effective in 

achieving optimal solutions. In a similar manner 

to CGP, a methodology has been proposed in 

[12], which is more inclined toward the 

implementation of Boolean functions rather than 

focusing on the least gates designs. In [11], GP 

has been employed for the design of 

combinatorial logical circuits considering the least 

number of gates, transistors, and levels. However, 

there are some limitations. First, the only gates 

used are the NAND ones. Secondly, there is no 

concern what so ever regarding the rate of 

convergence of the program. Thirdly, the results 

obtained are only compared with the manual 

designs. Finally, the evaluations reported are 

limited to functions with four variable inputs.In 

the current work, our goal was to implement the 

logical functions with the minimum number of 

gates (and to some extent, transistors and levels). 

At the same time, we tried to improve some 

defects and shortcomings seen in similar works 

such as low convergence rate (number of 

generations to get to the answer), not reaching the 

desired design, high populations for achieving the 

desired results, and no full coverage of the truth 

table. 

 

3. Implementation 

3.1. Genetic programming 

Genetic programming (GP) is one of the several 

evolutionary paradigms available for solving the 

optimization problems via computers. In this 

approach, first of all, an initial population of 

solutions or computer programs, each of which is 

a potential solution to the problem, is created. 

Then each of these candidate solutions is 

evaluated versus a so-called fitness function in 

order to measure its fitness. The more fit a 

solution is, the more chance is given for being 

selected in the next generation.  

Then through applying the cross-over and 

mutation operations, GP would produce a new 

generation of solutions from a previously elected 

one. These steps are repeated in GP until a 

convincing solution is obtained or a certain 

number of generations are reached. 

Since how we encode the conceivable solution 

space would significantly affect the accuracy as 

well as the speed of convergence, in what follows 

we explain our encoding scheme. 

3.2. Encoding 

As mentioned in the very beginning, GP starts 

with a population of initial solutions that are 

usually generated randomly. Each of these 

candidate solutions is essentially a combinatorial 

circuit that is made up of a number of logical 

gates. In practice, each candidate solution circuits 

needs to be properly defined for the 

implementation of GP. This process is called 

encoding of the solution space. One way to do 

encoding is for each solution to be individually 

coded and entered into the GP search process. 

This creates a large number of independent small 

data chunks, where evolutionary operations such 

as cross-over, mutation, and evaluation of the 

candidate solutions would be independently 

applied to these small items. This approach results 

in a lengthy GP implementation. On the other 

hand, we could encode several logic circuits as a 

single candidate solution for the implementation 

of GP and aggregately apply the evolutionary 

operations. This approach speeds up the search 

cycle by introducing a kind of parallelism in the 

implementation. For this purpose, several   
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candidate solutions are gathered in a 2D array, 

where the number of rows determines the number 

of solutions and the number of columns 

determines the levels used in the resulting circuit. 

This is illustrated in figure 1 for a 5*5 array. In 

this figure, all the evolutionary operations are 

applied simultaneously to the 5 solutions. Each 

element of the array is itself a 1D array, where the 

numbers in the array indicate the type of gates 

used together with the inter-connections of their 

inputs and outputs to the other gates (1D array 

elements) in the main array. In this configuration, 

the input of each element is allowed to come only 

from the previous stage and the last column 

represents the possible outputs. 

                                                                             

As it could be seen in figure 1, each element in 

the array is composed of five numbers with 

specific meanings. The first and second numbers 

represent the row and represent the row and 

column that one of the inputs of the gate should 

be connected, while the third and fourth numbers 

represent the row and column that the other input 

of the gate should be connected (based on two 

inputs gates). We interpreted the numbers 10, 20, 

30, 40, é as the main input variables A, B, C, D, 

é. The fifth number shows the type of gate 

according to the equivalences: WIRE = 0, AND = 1, 

OR = 2, XOR = 3,  NAND = 4,  NOR = 5.  

 

According to the configuration in figure 1 and 

depending on from which row of the last column 

we take the output, 5 combinatorial logic circuits 

are possible as the candidate solutions. For 

example, if we take the output from the first row 

of the last column, the circuit of figure 3a is 

obtained. In this figure, the element [5 1 2 2 2] in 

the first row and the fifth column is the output. 

This element is an OR gate whose first input 

comes from the output of the gate in the fifth row 

and the first column, while its second input comes 

from the output of the gate located in the second 

row and the second column. The situation is better 

visualized in figure 2, where the inter-connections 

for this OR gate is drawn up to the main input 

variables (A, B, C, é).  

When this protocol is applied to all the rows of 

the last column, 5 circuits in figure 3 are obtained.  

 

 
C5 C4 C3 C2 C1  

22 

 
51 

[5 1 2 2 2] 

     
 

R1 

   20=B 

 
31 
[3 1 2 0 1] 

  
 

R2 

    40=D 

 
10=A 

[4 0 1 0 4] 

 

 
R3 

     R4 

    40=D 

 
40=D 

[4 0 4 0 3] 

 

 
R5 

Figure 2. Circuit resulting from first row of figure 1. 

3.3. Fitness function 

An important factor influencing the success of GP 

is an appropriate evaluation function that 

determines the fitness of possible solutions for 

their respective effectiveness in the next 

 

[2,0,3,0,2]  [1,0,1,0,0]  [2,2,4,1,5]  [2,3,1,3,3]  [5,1,2,2,2] 

 

[2,0,5,0,5]  [3,1,2,0,1]  [2,2,3,1,5]  [3,2,4,1,3]  [4,3,2,0,2] 

 

[4,0,1,0,4]  [4,1,3,1,3]  [5,2,5,2,0]  [5,3,2,1,1]  [2,3,2,3,0] 

 

[3,0,4,0,2]  [1,0,1,0,0]  [3,2,4,0,2]  [2,1,1,0,3]  [2,4,2,4,0] 

 

[4,0,4,0,3] [3,0,2,1,2]  [1,2,5,0,2]  [5,1,5,1,0]  [4,1,5,4,5] 

Figure 1. A typical array of 5 candidate solutions. 

 

 
 

 
 

 
 

Figure 3. Equivalent circuits for array of figure 1. Last 

column and a) first row as output; b) second row as 

output; c) third row as output; d) fourth row as output; 

e) fifth row as output. 

A

D
D

D

B

(a)

A
DD

D

B(b)

C

A
D

D

C

C

D(c)

A
D

B

D

A

(d)

D
C

D
C

(e)



Mousavi & Khodadadi / Journal of AI and Data Mining, Vol 6, No 2, 2018. 

 

358 
 

population. According to the common criteria of 

optimality for combinational logic circuits 

including having minimum number of gates and 

maximum coverage of the truth table, it is natural 

to consider these criteria in the definition of the 

evaluation function. Accordingly, the evaluation 

function would be a weighted sum of the number 

of false results (compared to the truth table) and 

the number of gates as in (1). 

(10 ) ( )
2 31

11

in

errors gates

FF

³ +

=  

 

 

(1) 

 

In this equation, in is the number of inputs. Errors 

is the number of errors of the output of the 

solution circuit with respect to the truth table. 

Gates is the number of gates used in the proposed 

circuit. The fitness function is designed so that its 

values are between 0 and 1. The more its value is 

close to zero, the more would be the fitness of the 

proposed solution. Nevertheless, we use the value 

1-FF in our drawings such that the more close we 

get to the value of 1, the proposed solution would 

be more successful. 

While the evaluation function in (1) targets 

solutions with the lowest number of gates, the 

number of columns in the array of solutions 

specifies the maximum number of levels of the 

solution. Therefore, we can use the number of 

columns in the array of solutions as a parameter 

whereby we allow it to vary between 1 and a 

maximum. For each value of the parameter for 

which the optimal solution is found such that it 

covers the truth table completely, we stop and the 

next values will not be tried. As a result, the 

maximum number of levels of the designs would 

be controllable. Note that for a specific choice for 

the number of columns, our approach still outputs 

circuits with less level than the number of 

columns. Thus in the evaluation tests that come in 

Section 4, we fix the number of columns to 5.  

Therefore, with this approach and using the 

NAND, NOR, and XOR gates for which the 

number of employed transistors are compared in 

table 1, our implementation targets the circuits 

with a minimum number of gates, levels, and 

transistors. 

 

3.4. Selection and evolution of generations 

After the effectiveness of each chromosome in the 

initial population was calculated, better 

chromosomes of the population should be selected 

as the parents of the next generation.  In order to 

maintain the diversity of the next generation, 

while keeping the elite chromosomes, the roulette 

wheel and elitism selection approaches are being 

used together to select the parents for the next 

population. Then the usual cross-over and 

mutation operations would be applied to create a 

new generation. 

Table 1. CMOS gate characteristics. 
 

Number of 

transistor 

Area 

(µm) 

Gate symbol Gate 

type 

Gate 

type 

code 

0 0 ________ Wire 0 

2 1728 

 

NOT 1 

6 2880 

 

AND 2 

6 2880 

 

OR 3 

4 2304 

 

NAND 4 

4 2304 

 

NOR 5 

9 4608 

 

XOR 6 

9 5184 

 

XNOR 7 

 

4. Evaluation 

In this section, we illustrate our implementation of 

GP and evaluate its performance via Boolean 

functions. We also compare our results with the 

related works. 

 

Figure 4. Circuit for F1. 

4.1. Test Functions 

Test 1: A function with three variables: 

F1(A,B,C) = × (3,5,6) 

The optimized circuit is shown in figure 4. The 

cnvergence diagram for the circuit is shown in 

figure 5. The first point to note is a fast 

convergence process (in generation 10), as could 

be seen in figure 5. The second point is depicted 

in table 2. As it could be seen, using our approach, 

4 gates and 26 transistors are used for the circuit 

in 3 levels.  

CBA

F1
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Table 2 compares the results of other works. Note 

that the Human Designer 1 (HD1) uses the 

Karnaugh Maps plus Boolean algebra, whereas 

the Human Designer 2 (HD2) uses the Quine-

McCluskey Procedure.  

As it can be seen in this table, compared to the 

classic methods, the proposed method reduced the 

average number of gates and transistors by 44% 

and 35%, respectively, and also has some 

advantages over other approaches such as MGA 

[8] and NGA [6].

Table 2. Comparison of proposed method vs. similar approaches in terms of general design parameters for function F1. 

Method Optimized function Number of 

gates 

Number of 

transistors 

Number of 

Levels 

HD1(KM)[8]  F=C.(AṥB)+B.(AṥC) 5 36 3 

HD2(QM)[8]  F=Aῂ.B.C+A.(BṥC) 6 35 4 

NGA[6]  F=(C+B).(Bṥ(AṥC))ῂ 5 32 4 

MGA[8]  F=(A+B).Cṥ(A.B) 4 27 3 

our approach F={[(BṥC)ṥA]+(B+C)ῂ}ῂ 4 26 3 

 
Test 2 : A function with 4 variables 

F2(A,B,C,D)= × (0,1,3,6,7,8,10,13). 

Figure 6 shows the designed circuit using the 

proposed approach.  

As it could be seen in figure 6, the circuit is 

realized by 6 gates and 38 transistors in three 

levels. Table 3 (Human Designer 1 uses the 

Karnaugh Maps plus Boolean algebra to simplify 

the circuit, whereas Human Designer 2 uses the 

Sasao method [7]) also compares the results in 

terms of the optimal circuit parameters. 

Decreasing the number of gates, transistors, and 

levels is evident. The convergence diagram for the 

circuit for function F2 is shown in figure 7. A fast 

convergence process is seen in generation 37, 

though due to the increase in the number of inputs 

and functionôs complexity, the process is lengthier 

compared to F1. 

 

 

 

Figure 5. Convergence diagram for F1. 

 

Figure 6. Circuit for F2. 

 

Figure 7. Convergence diagrams for function F2. 
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