

Journal of AI and Data Mining

Vol 6, No 2, 2018, 355-363 DOI: 10.22044/JADM.2017.1059

A Fast and Self-Repairing Genetic Programming Designer for Logic

Circuits

 A. M. Mousavi
 1*

 and M. Khodadadi
2

1. Department of Electrical Engineering, Lorestan University, Khoramabad, Lorestan, Iran.

2. Department of Electrical Engineering, Azad University, Arak Branch, Arak, Iran.

Received 03 June 2016; Revised 05 November 2016; Accepted 31 May 2017

*Corresponding author: mousavi.m@lu.ac.ir (A..Mousavi).

Abstract

Usually the important parameters in the design and implementation of combinational logic circuits are the

number of gates, transistors, and levels used in the design of a circuit. In this regard, various evolutionary

paradigms with different competency have recently been introduced. However, while being advantageous,

evolutionary paradigms also have some limitations including a) lack of confidence in reaching the correct

answer, b) long convergence time, and c) restriction on the tests performed with a higher number of input

variables. In this work, we implement a genetic programming approach that given a Boolean function,

outputs an equivalent circuit such that the truth table is covered, and the minimum number of gates (and to

some extent, transistors and levels) are used. Furthermore, our implementation improves the aforementioned

limitations by incorporating a self-repairing feature (improving limitation a); efficient use of the conceivable

coding space of the problem, which virtually brings about a kind of parallelism and improves the

convergence time (improving limitation b). Moreover, we apply our method to solve the Boolean functions

with a higher number of inputs (improving limitation c). These issues are verified through multiple tests, and

the results obtained are reported.

Keywords: Genetic Programming, Logic Circuits, Design, Optimization.

1. Introduction

With the emergence of new methods for the

optimization problems, the research works in the

design of combinatorial logic circuits have also

gained a boost. This trend has paved the arena for

entering evolutionary paradigms as one of the

successful models for solving the optimization

problems, in general, and optimization of

combinational logic circuits, in particular.

In this paper, we present a method based upon

genetic programming that efficiently utilizes the

coding space of the logical circuits to accelerate

the convergence time of the solutions. As a result,

the cases we tested led to less-gate designs (with

smaller number of transistors and levels)

compared to the earlier works. The distinguishing

facets of our approach are the utilization of a new

encoding for the logical circuits and self-repairing

ability so that the program will be able to recover

from incomplete answers. These are utilized along

with a proper evaluation function and selection

strategy. Applying these features to several test

cases shows that the proposed approach is able to

achieve satisfactory results in terms of the usual

design criteria.

Our work and its achievements will be presented

as what follow. In Section 2, we briefly review

some earlier works. Section 3 begins with a brief

description of genetics programming (GP) and

continues with our implementation for the design

of combinational logic circuits including the

appropriate coding, evolutionary operators, and so

on. In Section 4, the results of applying our

approach to a series of previously studied circuits

as well as the new ones are reported. Finally,

Section 5 closes the paper with conclusions and a

few suggestions for further research.

2. Related works

One of the classical methods implemented to

Mousavi & Khodadadi / Journal of AI and Data Mining, Vol 6, No 2, 2018.

356

simplify digital functions, as taught in textbooks,

is the basic Boolean manipulation techniques.

These methods, which mainly consist of factoring

and removing variables, could lead to a rather

straightforward approach of Karnaugh Maps [15].

While the Karnaugh Maps is effective in solving

problems with a few variables, problems with

more variables require computer-based

approaches such as Quin maccLausky [16]. With

an increase in the number of design variables and

constraints, the complexity of the design process

increases. This fact along with a growth in the use

of the computational intelligence for the

optimization problems has paved the way for

applying evolutionary computation paradigms to

the design of electronic and logical circuits [3,4].

Earlier works in applying the evolutionary

procedures to the design of logical circuits goes

back to the application of genetic algorithm (GA)

and genetic programming (GP) [1,5], where the

emphasis was on the mere generation of circuits

rather than the optimization concerns. On the

other hand, others performed a comparison

between the evolutionary procedures in terms of

their ability in convergence. For example, [13]

and [14] compare GP and GA, and show that GA

may prematurely converge to non-local optima,

while GP has a greater chance to find the best

solutions.

In [10], a so-called Cartesian Genetic

Programming (CGP) method has been proposed

for the design of combinatorial logical circuits. In

this work, instead of using a tree structure, which

is usually used in GP, arrays of strings are used

for genotypes, which is more effective in

achieving optimal solutions. In a similar manner

to CGP, a methodology has been proposed in

[12], which is more inclined toward the

implementation of Boolean functions rather than

focusing on the least gates designs. In [11], GP

has been employed for the design of

combinatorial logical circuits considering the least

number of gates, transistors, and levels. However,

there are some limitations. First, the only gates

used are the NAND ones. Secondly, there is no

concern what so ever regarding the rate of

convergence of the program. Thirdly, the results

obtained are only compared with the manual

designs. Finally, the evaluations reported are

limited to functions with four variable inputs.In

the current work, our goal was to implement the

logical functions with the minimum number of

gates (and to some extent, transistors and levels).

At the same time, we tried to improve some

defects and shortcomings seen in similar works

such as low convergence rate (number of

generations to get to the answer), not reaching the

desired design, high populations for achieving the

desired results, and no full coverage of the truth

table.

3. Implementation

3.1. Genetic programming

Genetic programming (GP) is one of the several

evolutionary paradigms available for solving the

optimization problems via computers. In this

approach, first of all, an initial population of

solutions or computer programs, each of which is

a potential solution to the problem, is created.

Then each of these candidate solutions is

evaluated versus a so-called fitness function in

order to measure its fitness. The more fit a

solution is, the more chance is given for being

selected in the next generation.

Then through applying the cross-over and

mutation operations, GP would produce a new

generation of solutions from a previously elected

one. These steps are repeated in GP until a

convincing solution is obtained or a certain

number of generations are reached.

Since how we encode the conceivable solution

space would significantly affect the accuracy as

well as the speed of convergence, in what follows

we explain our encoding scheme.

3.2. Encoding

As mentioned in the very beginning, GP starts

with a population of initial solutions that are

usually generated randomly. Each of these

candidate solutions is essentially a combinatorial

circuit that is made up of a number of logical

gates. In practice, each candidate solution circuits

needs to be properly defined for the

implementation of GP. This process is called

encoding of the solution space. One way to do

encoding is for each solution to be individually

coded and entered into the GP search process.

This creates a large number of independent small

data chunks, where evolutionary operations such

as cross-over, mutation, and evaluation of the

candidate solutions would be independently

applied to these small items. This approach results

in a lengthy GP implementation. On the other

hand, we could encode several logic circuits as a

single candidate solution for the implementation

of GP and aggregately apply the evolutionary

operations. This approach speeds up the search

cycle by introducing a kind of parallelism in the

implementation. For this purpose, several

Mousavi & Khodadadi / Journal of AI and Data Mining, Vol 6, No 2, 2018.

357

candidate solutions are gathered in a 2D array,

where the number of rows determines the number

of solutions and the number of columns

determines the levels used in the resulting circuit.

This is illustrated in figure 1 for a 5*5 array. In

this figure, all the evolutionary operations are

applied simultaneously to the 5 solutions. Each

element of the array is itself a 1D array, where the

numbers in the array indicate the type of gates

used together with the inter-connections of their

inputs and outputs to the other gates (1D array

elements) in the main array. In this configuration,

the input of each element is allowed to come only

from the previous stage and the last column

represents the possible outputs.

As it could be seen in figure 1, each element in

the array is composed of five numbers with

specific meanings. The first and second numbers

represent the row and represent the row and

column that one of the inputs of the gate should

be connected, while the third and fourth numbers

represent the row and column that the other input

of the gate should be connected (based on two

inputs gates). We interpreted the numbers 10, 20,

30, 40, é as the main input variables A, B, C, D,

é. The fifth number shows the type of gate

according to the equivalences: WIRE = 0, AND = 1,

OR = 2, XOR = 3, NAND = 4, NOR = 5.

According to the configuration in figure 1 and

depending on from which row of the last column

we take the output, 5 combinatorial logic circuits

are possible as the candidate solutions. For

example, if we take the output from the first row

of the last column, the circuit of figure 3a is

obtained. In this figure, the element [5 1 2 2 2] in

the first row and the fifth column is the output.

This element is an OR gate whose first input

comes from the output of the gate in the fifth row

and the first column, while its second input comes

from the output of the gate located in the second

row and the second column. The situation is better

visualized in figure 2, where the inter-connections

for this OR gate is drawn up to the main input

variables (A, B, C, é).

When this protocol is applied to all the rows of

the last column, 5 circuits in figure 3 are obtained.

C5 C4 C3 C2 C1

22

51

[5 1 2 2 2]

R1

 20=B

31
[3 1 2 0 1]

R2

 40=D

10=A

[4 0 1 0 4]

R3

 R4

 40=D

40=D

[4 0 4 0 3]

R5

Figure 2. Circuit resulting from first row of figure 1.

3.3. Fitness function

An important factor influencing the success of GP

is an appropriate evaluation function that

determines the fitness of possible solutions for

their respective effectiveness in the next

[2,0,3,0,2] [1,0,1,0,0] [2,2,4,1,5] [2,3,1,3,3] [5,1,2,2,2]

[2,0,5,0,5] [3,1,2,0,1] [2,2,3,1,5] [3,2,4,1,3] [4,3,2,0,2]

[4,0,1,0,4] [4,1,3,1,3] [5,2,5,2,0] [5,3,2,1,1] [2,3,2,3,0]

[3,0,4,0,2] [1,0,1,0,0] [3,2,4,0,2] [2,1,1,0,3] [2,4,2,4,0]

[4,0,4,0,3] [3,0,2,1,2] [1,2,5,0,2] [5,1,5,1,0] [4,1,5,4,5]

Figure 1. A typical array of 5 candidate solutions.

Figure 3. Equivalent circuits for array of figure 1. Last

column and a) first row as output; b) second row as

output; c) third row as output; d) fourth row as output;

e) fifth row as output.

A

D
D

D

B

(a)

A
DD

D

B(b)

C

A
D

D

C

C

D(c)

A
D

B

D

A

(d)

D
C

D
C

(e)

Mousavi & Khodadadi / Journal of AI and Data Mining, Vol 6, No 2, 2018.

358

population. According to the common criteria of

optimality for combinational logic circuits

including having minimum number of gates and

maximum coverage of the truth table, it is natural

to consider these criteria in the definition of the

evaluation function. Accordingly, the evaluation

function would be a weighted sum of the number

of false results (compared to the truth table) and

the number of gates as in (1).

(10) ()
2 31

11

in

errors gates

FF

³ +

=

(1)

In this equation, in is the number of inputs. Errors

is the number of errors of the output of the

solution circuit with respect to the truth table.

Gates is the number of gates used in the proposed

circuit. The fitness function is designed so that its

values are between 0 and 1. The more its value is

close to zero, the more would be the fitness of the

proposed solution. Nevertheless, we use the value

1-FF in our drawings such that the more close we

get to the value of 1, the proposed solution would

be more successful.

While the evaluation function in (1) targets

solutions with the lowest number of gates, the

number of columns in the array of solutions

specifies the maximum number of levels of the

solution. Therefore, we can use the number of

columns in the array of solutions as a parameter

whereby we allow it to vary between 1 and a

maximum. For each value of the parameter for

which the optimal solution is found such that it

covers the truth table completely, we stop and the

next values will not be tried. As a result, the

maximum number of levels of the designs would

be controllable. Note that for a specific choice for

the number of columns, our approach still outputs

circuits with less level than the number of

columns. Thus in the evaluation tests that come in

Section 4, we fix the number of columns to 5.

Therefore, with this approach and using the

NAND, NOR, and XOR gates for which the

number of employed transistors are compared in

table 1, our implementation targets the circuits

with a minimum number of gates, levels, and

transistors.

3.4. Selection and evolution of generations

After the effectiveness of each chromosome in the

initial population was calculated, better

chromosomes of the population should be selected

as the parents of the next generation. In order to

maintain the diversity of the next generation,

while keeping the elite chromosomes, the roulette

wheel and elitism selection approaches are being

used together to select the parents for the next

population. Then the usual cross-over and

mutation operations would be applied to create a

new generation.

Table 1. CMOS gate characteristics.

Number of

transistor

Area

(µm)

Gate symbol Gate

type

Gate

type

code

0 0 ________ Wire 0

2 1728

NOT 1

6 2880

AND 2

6 2880

OR 3

4 2304

NAND 4

4 2304

NOR 5

9 4608

XOR 6

9 5184

XNOR 7

4. Evaluation

In this section, we illustrate our implementation of

GP and evaluate its performance via Boolean

functions. We also compare our results with the

related works.

Figure 4. Circuit for F1.

4.1. Test Functions

Test 1: A function with three variables:

F1(A,B,C) = × (3,5,6)

The optimized circuit is shown in figure 4. The

cnvergence diagram for the circuit is shown in

figure 5. The first point to note is a fast

convergence process (in generation 10), as could

be seen in figure 5. The second point is depicted

in table 2. As it could be seen, using our approach,

4 gates and 26 transistors are used for the circuit

in 3 levels.

CBA

F1

Mousavi & Khodadadi / Journal of AI and Data Mining, Vol 6, No 2, 2018.

359

Table 2 compares the results of other works. Note

that the Human Designer 1 (HD1) uses the

Karnaugh Maps plus Boolean algebra, whereas

the Human Designer 2 (HD2) uses the Quine-

McCluskey Procedure.

As it can be seen in this table, compared to the

classic methods, the proposed method reduced the

average number of gates and transistors by 44%

and 35%, respectively, and also has some

advantages over other approaches such as MGA

[8] and NGA [6].

Table 2. Comparison of proposed method vs. similar approaches in terms of general design parameters for function F1.

Method Optimized function Number of

gates

Number of

transistors

Number of

Levels

HD1(KM)[8] F=C.(AṥB)+B.(AṥC) 5 36 3

HD2(QM)[8] F=Aῂ.B.C+A.(BṥC) 6 35 4

NGA[6] F=(C+B).(Bṥ(AṥC))ῂ 5 32 4

MGA[8] F=(A+B).Cṥ(A.B) 4 27 3

our approach F={[(BṥC)ṥA]+(B+C)ῂ}ῂ 4 26 3

Test 2 : A function with 4 variables

F2(A,B,C,D)= × (0,1,3,6,7,8,10,13).

Figure 6 shows the designed circuit using the

proposed approach.

As it could be seen in figure 6, the circuit is

realized by 6 gates and 38 transistors in three

levels. Table 3 (Human Designer 1 uses the

Karnaugh Maps plus Boolean algebra to simplify

the circuit, whereas Human Designer 2 uses the

Sasao method [7]) also compares the results in

terms of the optimal circuit parameters.

Decreasing the number of gates, transistors, and

levels is evident. The convergence diagram for the

circuit for function F2 is shown in figure 7. A fast

convergence process is seen in generation 37,

though due to the increase in the number of inputs

and functionôs complexity, the process is lengthier

compared to F1.

Figure 5. Convergence diagram for F1.

Figure 6. Circuit for F2.

Figure 7. Convergence diagrams for function F2.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

namber of Gneration

fi
tn

e
s
s

MAX Fittness

Avg Fittness

Min Fitness

DCBA

F2

Generation number

Generation number

