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Abstract 

There are two significant goals in teleoperation systems: Stability and performance. This paper introduces an 

LMI-based robust control method for bilateral transparent teleoperation systems in presence of model 

mismatch. The uncertainties in time delay in communication channel, task environment and model 

parameters of master-slave systems are called a model mismatch. The time delay in communication channel 

is assumed to be large, unknown and asymmetric, but the upper bound of the delay is assumed to be known. 

The proposed method consists of two local controllers. One local controller namely local slave controller is 

located on the remote site to control the motion tracking and the other one is located on the local site namely 

local master controller to preserve the complete transparency by ensuring force tracking and the robust 

stability of the closed-loop system. To reduce the peak amplitude of output signal respect to the peak 

amplitude of input signal in slave site, the local slave controller is designed based on a bounded peak-to-peak 

gain controller. In order to provide a realistic case, an external signal as a noise of force sensor is also 

considered. Simulation results show the effectiveness of proposed control structure. 

Keywords:Bilateral teleportation system, Complete Transparency, Robust control, Large Time Delay, 

Linear MatrixInequality. 

1. Introduction 
It is common that timedelay is often a source of 

instability and/or poor performance of many 

systems. Therefore, stability analysis and control 

design problems of the time delay systems have 

drawn an increasing attention during the last two 

decades.  Bilateral teleoperation system is one of 

the most well-known areas of such systems. In 

bilateral teleoperation, a human operator applies 

force to the master in order to produce the desired 

motion. The motion of master is transmitted to the 

slave system a communication channel. The slave 

system tracks the motion of master system and 

sends back the reflected force from task 

environment to the master. Bilateral teleoperation 

system can be generically described by means of 

the block diagram shown in Figure 1.  

Transparency is the major criterion for the 

performance of teleoperation systems. If the slave 

accurately reproduces the master's commands and 

the master correctly feels the slave forces, then the 

human operator experiences the same interaction 

as the slave would. This is called transparency in 

teleoperation systems [1]. In other words, the 

ideal responses (i.e. the complete transparency) 

for the teleoperation system with time delay can 

be defined as follows: 

- The force that the human operator applies to the 

master robot is equal to the force reflected from 

the task environment. This can help the operator 

to realize the force sensation. 

- The master position/velocity is equal to the slave 

position/velocity. 
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Because of the importance of stability and 

transparency in bilateral teleoperation systems, 

several control schemes have been proposed in 

literatures [2]-[18]. Some researchers have 

analyzed the transparency of teleoperation 

systems, when there is no time delay in 

communication channels. Moreover, in some 

cases, in order to make the system transparent, 

acceleration of the master and the slave must be 

sent to the other side. However, acceleration 

measurement is not an easy task [2]-[7]. In some 

papers, it has been assumed that the time delay in 

communication channel is constant [8]-[12]. In 

addition, some proposed methods in literatures are 

not stable for large time delays (with or without 

uncertainties in the time delay) [13]-[16]. 

Moreover, in some articles, the forward and the 

backward time delays have been assumed 

identical [8], [13], [17]-[23]. Some researchers 

have also proposed different control strategies, 

such as three and four-channel control methods 

for teleoperation systems in presence of the time 

delay with good transparency. Nevertheless, these 

methods are difficult to realize [24]. In [25] and 

[26], a simple structure design proposed for 

bilateral transparent teleoperation systems in 

presence of time delay uncertainty. In the 

proposed control method, to achieve complete 

transparency, direct-force measurement-force 

reflecting control has been used.  
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Figure 1. A general framework of bilateral teleoperation 

system. 

Recently, the LMI-based approaches have been 

employed to deal with stability and stabilization 

problems [27] such as teleoperation systems. In 

2008, an LMI approach to robust H∞and 

L1controllers design for a bilateral teleoperation 

system introduced [28]. Although the time delay 

of communication channel was assumed to be 

large, unknown and randomly time varying, but 

the upper bounds of the time delay interval and 

the derivative of the delay were assumed to be 

known. In 2009, the teleoperation system with 

asymmetric time delays has been also studied in 

the form of LMI [29]. The stability condition 

based on LMI has been used to optimize the 

allowable maximum delay values. In this method, 

the upper bounds and the derivative of time delay 

have been assumed to be known. The main 

drawback of these papers is that the complete 

transparency has not been achieved.  

It is noticeable that there are two different 

methods to investigate the stability of delay 

systems: 1) delay-independent stability and 2) 

delay-dependent stability [30]. The delay-

independent stability is defined for any length of 

nonnegative delay values, while the delay-

dependent stability is referred to as the property in 

which the system is stable for any time delay 

values as long as T≤Tmax. So, the delay-dependent 

stability criterion assumes prior knowledge on the 

upper bounds of the delay values.   

This paper presents a novel LMI-based robust 

control design for bilateral teleoperation systems 

in presence of model mismatch. Also, the 

uncertainties in time delay in communication 

channel, task environment and model parameters 

of master-slave systems are called model 

mismatch. The main goals of the proposed control 

method are: 1) the closed-loop control system is 

delay-dependent stable with asymmetric time 

delays while the whole system is complete 

transparent; 2) the motion/force scaling can be 

selected arbitrarily. In other words, it is applicable 

to micro-micro manipulation. In the proposed 

method, the time delay in communication channel 

is assumed to be unknown, but the upper bound of 

delay is assumed to be known. This assumption is 

very general for the time delay. Since the time 

delay of the practical systems are often bounded, 

it is reasonable to assume the upper bound on the 

time delay. To achieve these goals, the proposed 

method consists of two local controllers. One 

local controller namely local slave controller is 

located on the remote site to control the motion 

tracking and the other one is located on the local 

site namely local master controller to preserve the 

complete transparency by ensuring force tracking 

and the robust stability of the closed-loop system. 

By applying an LMI-based convex optimization 

method, a time response can be achieved with 

smaller settling time accompanied by lower 

control efforts in local and remote sites. 
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This paper is briefly outlined as follows: the 

modeling of bilateral teleoperation systems 

including time delay in communication channel is 

presented in section II. Section III introduces the 

standard representation of control system. The 

main results are represented in section IV. This 

section is assigned to the design of local 

controllers. The stability analysis of the proposed 

control structure is also described. Section V 

shows the simulation results. Finally, section VI 

draws conclusions and gives some suggestions for 

the future works.  

2. System description 

2.1.Structure of teleoperation system  
Figure 2 depicts the structure of bilateral 

teleportation system. In this figure, G is the 

transfer function of the system, C shows the local 

controller, indices m and s denote the master and 

the slave systems, respectively, fe is the contact 

force from task environment,fr is the reflected 

force from the remote environment, fh 

demonstrates the force applied to the master 

system by the human operator, Tms and Tsm are the 

forward (from master to slave) and backward 

(from slave to master) time delays, respectively. 

Moreover, Ze is the impedance of the task 

environment and ν(t)represents the sensor noise of 

the force measurement in the remote site. Finally, 

Kp and Kf are the arbitrary motion and force 

scaling factors, respectively.  
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Figure 2. Teleportation system structure. 

 
 

It is noticeable that because of using direct-force 

measurement-force reflecting control, the 

utilization of force sensor is inevitable. Hence, the 

noise of sensor in the remote site must be 

considered. This issue has not been investigated in 

[25], [26]. The following assumptions have to be 

stated first: 

Assumption 1: The forward and backward time 

delays are assumed to be bounded and can be non-

identical. 

Assumption 2: The slave system acts on hard task 

environment. 

Assumption 3: The contact force fe is measurable. 

 

2.2.Modeling of time delay   
In the proposed control methodology, the time 

delay uncertainty is modeled in multiplicative 

form. According to assumption 1, a new bounded 

variable denoted by T can be defined as a 

summation of the forward and the backward time 

delays. 

0ms sm maxT T T , T T    (1) 

Based on fluid flow model [31], the time delay T

can be represented as follows: 

   max min max min

1 1
, 1 1

2 2
T T T T T       

 

(2) 

Where maxT  and minT are the upper bound and the 

lower bound of T , respectively and the parameter 

  specifies the uncertainty region. Let define a 

new parameter   as  

 max min
max

1

2
 T T

T


 

(3) 

Substituting (3) into (2) yields 

  max max1 , 0.5T T T       
 

(4) 

The parameters  and  are real constants to be 

determined based on application. The first term of 

(4) shows a constant delay part while the second 

term represents the uncertain delay time. By using 

the first-order Pade approximation, the 

exponential delay transfer function is written as   

 

 

 

max max

max max

max max

(1 ) 1 2
.

1 2

1 1 2 1 2

1 1 2 1 2

s T s TsT sT
e e e

sT

s T s T

s T s T

 

  

  

  
 



    
        

 

(5) 

Hence, the uncertain delay part given in (5) can be 

expressed as a multiplicative uncertainty.  
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max max

max max

1 2
1

1 2 1 2

1 ( )mT

s T s T

s T s T

W s

   

   


 

 

    

(6) 

Where   is the perturbation function with 1


 

and  

max

max

( )
1 2

mT

s T
W s

s T

 

 



 

(7.1) 

is a multiplicative uncertainty weigh. As ( )mTW s

cannot cover all possible uncertain delay, the 

following modified weighting function is used 

[32]:  

max

max

( )
1 3.465

mT

s T
W s

s T

 

 



 

(7.2) 

Figure 3 shows the configuration of time delay 

uncertainty used in this paper. It should be noted that 

the lower bound of time delay is also frequently equal 

to zero. 





  

 

max

max

1 1
2

1 1
2

T
s

T
s





 
  

 
  
 

 maxmTW T

 
Figure 3. Configuration of time delay uncertainty 

3.Standard representation of control 

system 
Figure 4 shows the standard control representation 

for the local controllers design, i.e. local master 

controller Cm and local slave controller Cs. In this 

figure, u is the control input, w is a vector of 

exogenous signal (reference input signal, 

disturbance and sensor noise signals) and y is the 

measurement output signal. Z is also a vector of 

output signals (z1 z2 … zi)
T
 related to the 

performance of the control system. The state 

space of the structure shown in Figure 4 is defined 

as follows: 

w

z zw z

w

x Ax B w Bu

Z C x D w D u

y Cx D w

  

  

 

 
(8) 

Our goal is to find a dynamical output-feedback 

controller with state space realization given in (9) 

such that makes desired changes in the outputs' 

vector. 

K K

K k

A B y

u C D y

 



 

 
 

(9) 

In (9), ζ represents a vector of the controller's 

states and u and y were introduced before.  

Next section presents how we can obtain the 

structure shown in Figure 4 for local master and 

slave controllers design. 

Generalized

Plant

Controller

1zrw

y

u

2z

iz

dw

nw

 
Figure 4. Standard control system representation. 

4. Controller design 
This section is assigned to the local controllers 
design. As mentioned before, to achieve robust 
stability and complete transparency, two local 
controllers are designed: One controller in the 
remote site Cs namely local slave controller, and 
the other in the local site Cm namely local master 
controller. The local slave controller is 
responsible for tracking the master commands and 
the local master controller is in charge of force 
tracking as well as guaranteeing the robust 
stability of the closed-loop system. Without loss 
of generality, the position of master and slave 
systems are considered. The scaling factors 
betweenmaster and slave are also set to unity. It 
should be recalled that the designer can select 
arbitrary values for motion/force scaling. 

4.1.The local slave controller 
First, in order to design the local slave controller, 

the slave control system is reformulated in such a 

way that it is converted to an equivalent block 

diagram in a standard control system 

representation given in Figure 4. Let define the 

following variable 

( )
( ) =

( )

s

s

e s

G s
G s  

1+ Z G s
  

(10) 

Hence, referring Figure 2, the standard of slave 

control system can be shown as Figure 5. Base on 

control theory, the feedback control system in 

Figure 5 can be shown as the standard control 

system representation in Figure 4. 
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Figure 5. The structure of local slave controller design 

 

 

In Figure 5, Cs is the local slave controller; Wms is 

the uncertainty weighting function due to 

variations in the dynamics of the slave system. 

Wps, and Wus are also the performance and the 

controller weighting functions, respectively. In 

addition, motion tracking, to reduce the peak 

amplitude of output signal respect to the peak 

amplitude of input signal, a bounded peak-to-peak 

gain controller for the slave system can be 

constructed from Theorem 1. The peak-to-peak 

gain for a transfer function; Gi is defined as [33]: 

 

   

 

0 0 0

1 0

j cl

i peak

i

z T : x ,T ,
G : sup

w t for t

   
  

   

 
(11) 

Where clx denotes the closed-loop state vector. 

This relation measures the maximum norm of 

output signal zj for inputs wj whose amplitude 

does not exceed one. Recall that there is no exact 

characterization for the peak-to-peak norm in the 

LMI framework, but it is possible to deduce the 

upper bounds for 
i peak

G [33]. 

Theorem 1: Consider the closed-loop system in 

Figure 5. Motion tracking with lower maximum 

overshoot via local slave controller Cs can be met 

by solving the following minimization LMI.Based 

on this, a bounded peak-to-peak gain controller 

can be constructed for the slave system if there 

existX, Y, μ, λ and  as follows [33]: 

0,mininmize  
 

11

21 22

31 32

* *

* 0,

X

I Y

I



 



  
 
     

    

 

 

41 42 43

0 *

0 *
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0 0 *

X I

I Y

I

I

 

 

 



 
 
  
 
 
   

 

 

 

 

 

 

(12) 

 

 

where Π11, Π21, Π31, Π22, Π41, Π32, Π42, Π43  can be 

obtained from 

   

   

 
1 1 1 1

1 1

11 21

22 32

43 41

31 42

ˆ ˆ ˆ ˆ: :

ˆ ˆ ˆ ˆ: :

ˆˆ: :

ˆ ˆ: :

T T
T

k k k k

T T
T

k k w k w

z w z k w z z k

T

w k w z z k

AX XA BC BC A A BD C

A Y YA BC BC YB B D

D D D D C X D C

B BD D C D D C

        

       

     

     

 

(13) 

*sign is used to show the transpose components 

while A, Bw, Czand Dzw and Dzw are related matrices 

to the desired output channel from the state space 

realization of the generalized plant, and 

k k k
ˆ ˆˆA B C, , and

kD̂ represent the transformed 

parameters of the local slave controller which used 

in order to preserve the linearization of the design 

problem.  If   is chosen as a positive constant, the 

minimization of   will be a convex optimization. 

The real parameters of the controller can be 

constructed from the following relations [33]: 

 

 

  

1

1

k k

T

k k k

k k k

T T

k k K k k

ˆD : D

ˆC : C D CX M

ˆB : N B Y BD

ˆA : N A NB CX Y BC M Y A BD C X M





 



 

 

    

 

(14) 

Where N and M are nonsingular matrices that 

should satisfy TMN I XY  . 

4.2.The local master controller 
Considering the uncertainty in the time delay as 

well as the measurement noise accompanied by 

the reflected force, utilization of a multi-objective 

H2/H∞ controller in the master side is inevitable. 

The roles of local master controller Cm(s) are to 

provide robust stability to the overall system and 

ensure the force tracking based on 

multiobjectiveH2/H∞ approach. The force tracking 

means that the reflecting force Fe has to follow the 

human operator force Fh. First, we define the 

following variable: 

 
 

   1

s

s

s s

G s
G s

C s G s


 


 

(15) 

Then, Figure 2 can be simplified as in Figure 6. 

Now, since sending the contact force through the 

reflection path of communication channel 

performs the force tracking, a new output in the 

block diagram of Fig. 6 can be defined as rF . 

Hence, the structure of local master controller 

design can be redrawn as in Figure 7. In Figure 7, 

Wm2 is the uncertainty weighting function related 

to the time delay introduced in section 2.2 and 

WpmandWum are the performance and controller 

weighting functions which are chosen based on 
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objectives of the local master controller design 

(characteristics of the time response and 

maximum value of the control signal). 

Consequently, the local master controller Cm can 

be constructed from Theorem 2. 

hF
eF


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Figure 6. The closed-loop structure 
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Figure 7. The structure of local master controller design. 

 

Theorem 2: Consider the closed-loop control 

system in Figure 7. The local master controller 

with tracking error bound γ would exist if there 

exist X and Y that can satisfy the minimization of 

the following convex optimization inequality [33]: 

 
mininmize γ

  
2 2

11

22

31 32

*
0

0, * 0
0

ˆ, , 0z w z k w

X I

Subject to I Y

M M Q

Tr Q D D D D

 
   

       
 
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(16) 

where Π11, Π21, Π31, Π22, Π41, Π32, Π42, Π43 

introduced in (12) and 
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21 22
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31 32

41 42 43

* * *
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*I

I





 
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   
   
 
    

 

11

22 21 22

31 32

* *

*

I

 
 

    
    

 

2 2

2 2

31

32

ˆ:

ˆ:

z z k

z z k

M C X D C

M C D D C

 

 
 

(17) 

where * and the variables A, Bw, Cz, Dzw,   k  

  k    k and   k have been introduced before.  

5. Simulation results 
The one-degree of freedom manipulator is used 

for the master and the slave systems similar to 

many papers in this field [34]. The dynamic 

equation of the master and the slave systems are 

considered as  

min max2

min max

2 min max

1

1

m

m m m

s

e e e

c s s

y
m M m

u M s B s
b B b

y
z Z z

u M s B s

  


 

  


 

(18) 

Where B is the viscous friction coefficient, M is 
the mass, u is the input, Ze is the impedance of  
the environment and indices m  and s  are for the 
master and the slave, respectively. The parameter 
values are given in Table 1. To evaluate the 
effectiveness of the proposed method in the 
presence of model mismatch, simulations are 
carried out for three cases: 

Case 1: The time delay uncertainty.  

Case 2: The time delay uncertainty and the 
parameter uncertainty in the slave system. 

Case 3: The time delay uncertainty as well as the 
parameter uncertainties in the slave system and 
the task environment.  

 

Table 1. System parameters 

Symbol Amount 

Mm 1.5 

Bm 11 

mmin 0.1 

mmax 3.9 

bmin 3 

bmax 27 

Tmin 0 

Tmax 3 

Ze 2 

zemin 1 

zemax 3 

Kp 1 

Kf 1 

 
In simulations, two different inputs, which are the 
most common and generic dynamic test for 
control scheme, are utilized in simulations; step 
input and sinusoidal input. As a result, the control 
performance is evaluated by applying a step and a 
sinusoidal force exerted by human operator. It is 
necessary to recall that a large time delay is 
considered in the simulation. The time delay in 
bilateral teleoperation systems is defined small for 

0.001T  sec [25], [26]. As it mentioned in section 

2 in part B, the parameter  is set to 0.5. In all 
cases, the multiplicative uncertainty weight for 
time delay given in (7.2).  
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 
1.5

0.4329 1
mT

s
W s

s



 

(19) 

As shown in Figure 8, the opted weighting 
functions can cope with the time delay 
uncertainties and the variation of parameters in 
the slave system. The corresponding weighting 
functions depicted in Figures 5 and 7 are given in 
Table 2 and 3, respectively. Moreover, Table 4 
represents the obtained local controllers in 
different cases. From Theorem 1, to reduce the 
effect of uncertainty in the parameters of slave 
system and task environment in both Case 2 and 
Case 3, a bounded peak-to-peak gain controller 
(i.e. local slave controller Cs) in the remote site is 
employed. In addition, from the generalized 
structure given in (8) and Theorem 2, the local 
master controller Cm is obtained. Recall that the 
reduced order of local master controllers Cm using 
Normalized Coprime Factorization (NCF) method 
is given in Table 4. 
Simulation results are shown in Figures 9-13. 
These figures are the human force, the 
transparency response (position and force 
tracking), and the controller signals. Recall that 
force tracking error is a difference between human 
operator force fh and reflected force fr in presence 
measurement noise, whereas position tracking 
error is a difference between position of master xm 
and slave xs. From these figures, it can be seen that 
the designed controllers can meet the objectives 
i.e. robust stability and complete transparency. 
Furthermore, the local master controller can 
reduce the measurement noise accompanied by 
the reflected force from remote environment. 
Finally, to show the stability and performance 
index of the system in presence of model 
mismatch, μ analysis is used. Figures 13a and 13b 

illustrate the μ bound of the closed-loop stability 
and performance with designed local controllers. 
Since the values of μ bound related to the stability 
of system is smaller than one and near one for the 
performance, the designed controllers preserve the 
robust stability in presence model mismatch while 
the performance of system does not change 
effectively. 

6. Conclusion 
To achieve robust stability and complete 

transparency, this paper proposed a novel LMI-

based robust control design for bilateral 

teleoperation systems in presence of uncertainties 

in time delay in communication channel, task 

environment and model parameters of master-

slave systems, which is called model mismatch. 

Methodology in this paper focused on the time 

delay in communication channel assumed to be 

large and unknown, but the upper bound of the 

delay was assumed to be known. This assumption 

is very general for the time delay in 

communication channel. Two local controllers: 

One on the master side and the other one on the 

slave side were designed. The slave controller 

guarantees the position tracking and the master 

controller guarantees force tracking as well as the 

robust stability of the overall closed-loop system. 

Simulation results show the feasibility of the 

proposed control method. Future works in this 

research domain will include considering 

unbounded time delay in communication channel 

for proposed structure and some analytical and 

practical work and conditions for stability 

robustness of the closed-loop system.  
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Table 3. Corresponding weighting function for local master controller design shown in Figure 7 

Weighting Function  Case 1 Case 2 Case 3 
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Table 4. Local controllers 

Cases  Local master controller Local slave controller 
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Figure 8a. Bode diagram of the weighting functionWms for the uncertain slave system G/G0-1 
 

 
Frequency (Hz) 

Figure 8b. Bode diagram of the multiplicative weight functionWmT for third order Pade approximation of time delay. 
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Bode plot of the uncertain system and weighting function
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Bode plot of the third-order pade approximation and weighting function

Frequency  (Hz)

W
mT

Third-order pade of T
d

10
-1

10
0

-40

-20

0

M
a

g
n

it
u

d
e

 (
d

B
)

 

 
Bode plot of the third-order pade approximation and weighting function

Frequency  (Hz)



Khosravi et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013 

 

83 
 

 

Figure 9a. Force tracking for step input (Human operator Fh and reflected forceFr) 
 

 
Figure 9b. Force tracking error for step input 

 

 
Figure 10a. Position of master for step input (xm) 

 

 
Figure 10b. Position of slave for step input (xs) 
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Figure 10c. Position tracking error for step input  

 

 
Figure 11a. Master controller signal for step input (fm) 

 

 
Figure 11b. Slave controller signal for step input (fs) 

 
Figure 12a. Force tracking for sinusoidal input (Human operator Fh and reflected forceFr)   
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Figure 12b. Position of master system for sinusoidal input (xm) 

 

 
Figure 12c. Position of slave system for sinusoidal input (xs) 

 

 
Figure 13a. μ bound of the closed-loop stability with designed local controllers 
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Figure 13b. μ bound of the closed-loop performance with designed local controllers
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