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Abstract 
Mobile Ad-hoc Networks (MANETs) in contrast to other networks have more vulnerability because of 

having nature properties, such as dynamic topology and no infrastructure. Therefore, a considerable 

challenge for these networks, is a method expansion that can specify anomalies with high accuracy at 

network dynamic topology alternation. In this paper, two methods were proposed for dynamic anomaly 

detection in MANETs, namely IPAD and IAPAD. The anomaly detection procedure consists of three main 

phases: Training, detection and updating the two methods. In the IPAD method, to create the normal profile, 

we used the normal feature vectors and principal components analysis in the training phase. In detection 

phase, during each time window, anomaly feature vectors based on their projection distance from the first 

global principal component specified. In updating phase, at end of each time window, normal profile updated 

by using normal feature vectors in some previous time windows and increasing principal components 

analysis. IAPAD is similar to IPAD method with a difference that each node use approximate first global 

principal component to specify anomaly feature vectors. In addition, normal profile will be updated by using 

approximate singular descriptions in some previous time windows. The simulation results using NS2 

simulator for some routing attacks show that an average detection rate and an average false alarm rate in 

IPAD method had 95.14% and 3.02% respectively. The IAPAD method had 94.20% and 2.84% respectively. 

Keywords: MANETs, Dynamic Anomaly Detection, Routing attacks, Incremental Principal Component 

Analyses.

1. Introduction 
Mobile Ad hoc Networks (MANETs) are 

collections of wireless and mobile nodes that there 

is not any fixed infrastructure, such as base 

stations. In recent years, the advent of wireless 

devices was the cause of these networks potential 

growth. Today, MANETs are used in military 

battlefield, emergency rescue and vehicular 

communications because of its easy and rapid 

development [1]. In MANETs for sake of nodes 

mobility, network topology changes rapidly. Due 

to lack of centralized management in these 

networks, each node accomplishes routing 

process. 

Intrusion detection methods are divided into two 

main categories: Signature-based detection and 

anomaly detection [2]. In signature-based 

detection methods, known intrusion patterns 

compared with incoming traffic and if patterns 

matched, intrusion is recognized. Advantage of 

this method is low false alarm rate and its 

disadvantage is lack of new intrusion detection. In 

anomaly detection methods, first, a profile of 

network normal behavior created then any traffic 

deviated from created profile detected as an 

intrusion. Advantage of this method is new 

intrusions detection and its disadvantage is the 

high false alarm rate.  

In this paper, we proposed two methods named 

IPCA and IAPAD, which let normal profile get 

updated dynamically. Proposed methods contain 

three phases: Training, Detection and Updating. 

IPAD method, in training phase, creates network 

normal profile by using normal feature vectors. In 
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detection and updating phase, a normal profile 

gets updated by using normal feature vectors in 

each time window. IAPAD method, in training 

phase, calculates an approximate singular 

description for normal feature vectors in each time 

window, then in detection phase, IAPAD 

calculates approximate covariance matrix by 

using approximate singular description. 

In the updating phase by approximate covariance 

matrix, singular value parsing calculates the first 

approximate global principal component. 

Evaluations show that proposed methods have 

significant performance. 

In section II, we imply related works in MANETs 

anomalies detection field. In section III, AODV 

protocol and in section IV, the attacks against this 

protocol described shortly. In section V, we have 

a description about how to select features. In 

section VI, principal components analysis is 

explained. In section VII, anomaly detection 

based on increasing principal components is 

explained. In section VIII, dynamic anomaly 

detection based on increasing approximate 

principal components analysis is represented. In 

section IV, accomplished simulation results are 

reported for evaluation. Finally, in section VI, we 

state the conclusion of this paper. 

2. Related works 
Huang et al. [3] proposed a method that uses a 

cross-feature analysis to capture inter-feature 

correlation patterns in the normal traffic. They 

create normal profile by using a C classifier and 

the network normal traffic. C classifier applied on 

every  feature and a  classifier will be created 

as sub model. Finally, these sub models will be 

used as normal profile. In this method, normal 

profile just created from training data and always 

is stable. Regarding to nodes dynamic behavior in 

MANET, fixed normal profile cannot qualify 

current network state well. 

Huang et al. [4] used both specification-based and 

statistical-based approaches to detect attacks on 

AODV. First, they model AODV normal behavior 

by an extended finite state automaton (EFSA), 

according to its specifications. EFSA model is 

utilized for anomaly behaviors detection and they 

are deviated from descriptions. Statistics training 

algorithms with statistical properties are used for 

anomaly behaviors detection that is essentially 

statistical. In this method, normal profile is always 

fixed and does not alter with nodes behavior 

changes.  

Sun et al. [5] proposed a method focusing on the 

mobility in MANETs. In this method, first, in 

training phase, various models of routing actions 

mobility has been collected and the link change 

rate (LCRrecent) average will be calculated for each 

mobility level. Collected routing actions utilized 

for normal profile creation. Then, in detection 

phase, each local intrusion detection system 

calculates link change rate for its own nodes, 

which are recent routing actions alternatively. 

Among normal profiles, a profile selected its LCR 

has less Euclidean distance with LCRrecent. In each 

time slot, each node calculates LCR as for its new 

and old neighbors. Therefore, LCR calculating 

does not spot the whole of inter-network nodes. 

However, attention must be paid for that network 

estate change and this is because of other network 

nodes with a sudden appearance and 

disappearance. When node’s behavior in detection 

phase is different from training phase, using a 

predefined normal profile cannot describe 

network behavior well. 

Kurosawa et al. [6] proposed a method with 

dynamic learning to detect anomalies in 

MANETs. This method updates training data in 

symmetric time slots. They used three features to 

model AODV protocol normal behavior that of 

course the protocol behavior complexity cannot be 

a model well with these three features. In this 

method, network normal profile considered as 

normal data average. Their method is only able to 

detect Blackhole attack and is not able to detect 

more attacks. 

Nakayama et al. [7] proposed a method to detect 

dynamic anomaly that use principal components 

analysis for network normal profile creation. This 

method used normal data global covariance in 

sequential time slots for a created profile update. 

For each time slot, a weight is considered and is 

used as a factor in covariance calculating. This 

method uses weigh covariance in principal 

components calculating (WPCA). In this method, 

global covariance will be calculated inexactly. 

Raj et al. [8] proposed a dynamic learning system 

to detect Blackhole attack. In this system, the 

node that received RREP packet compares 

packet’s sequential number with a threshold value 

that updated dynamically. If the sequential 

number was greater than threshold value, RREP 

packet transmitter should be added to black list as 

an attacker node. This method is just able to detect 

Blackhole attack and is unable to detect other 

attacks. 

3. AODV routing protocol 
AODV protocol is a reactive routing protocol [9]. 

Protocol uses destination sequence number 

if iC
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concept in DSDV routing protocol for 

maintaining last routing information. Suppose, 

start node S attempts to communicate with 

destination node D. In lack of routing information 

aspect, S starts path discovery via a RREQ packet 

broadcasting to its neighboring nodes. By 

receiving RREQ packet having fresh routing 

information, each neighbor node replies S node 

via a RREP packet. Otherwise, a hop count field 

increases RREQ packet unit age and broadcasts 

this packet again to its neighbors. Also keeps 

routing information to create inverse path. Ni node 

to make sure about routing information freshness 

compares destination sequence number in RREQ 

packet with a D node’s sequence number in its 

own routing table. If a D node’s sequence number 

in routing table is lesser, this sequence number 

will be updated with destination sequence number 

at RREQ packet. If node N receives several RREP 

packets, select the packet that has greater 

destination sequence number. If destination 

sequence number of received RREP packets is 

equal, the packet will be selected which has lesser 

hop count. The start node starts a data packet 

sending as soon as first RREP packet receives. 

Each node for make sure about active paths 

validity, broadcasts a HELLO packet alternatively 

to its neighbors. When a node detects a link 

fraction, announce that to other nodes by creating 

a REEP packet. Figure 1 shows routing process in 

AODV protocol. 

 
Figure 1. Routing process in AODV protocol 

4.Attacks against AODV protocol 

A) Classification of attacks 

Attacks against AODV protocol are divided into 

four categories: 

1) Route Disruption: A malicious node either 

destroys an existing route or prevents a new route 

from getting established. 

2) Route Invasion: A malicious node adds itself 

into route between source and destination nodes. 

3) Node Isolation: A given node is prevented 

from communicating with any other nodes. It 

differs from route disruption in the route 

disruption is targeting at a route with two given 

nodes, while node isolation is targeting at all 

possible routes to or from a given node.  

4) Resource Consumption: The communication 

bandwidth in the network or storage space at 

individual nodes is consumed. 

In the following, we give a short description of 

some typical routing attacks on AODV [10]. 

 
Figure 2. Rushing Attack 

B)Typical Attacks 

1) Rushing Attack: Each source node establishes 

routing process by a RREQ packet transmission. 

In each routing process, each intermediate node 

just accepts the first received RREQ packet and 

ignores repetitive packets. Also, each intermediate 

node leads received RREQ packets after a delay. 

Malicious node by abusing these properties, 

immediate after each RREQ packet receiving, 

sends it to the next node. By this method, 

probability of malicious node standing between 

source and destination path will increases [11]. 

Fig. 2 shows a rushing attack example. In this 

figure, N6 and N7 nodes receive directed RREQ 

packet faster than other directed packets by 

malicious node. 

2) Neighbor Attack: In AODV protocol, each 

intermediate node adds its ID in the RREQ/RREP 

packets before forwarding it to the next node. In 

neighbor attack, malicious node forward RREQ or 

RREP packet to the next node without its ID 

adding. Malicious node's wrong behavior makes 

other nodes to save false information about its 

neighbors in routing tables. 
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Figure 3. Blackhole Attack 

 

3) Blackhole Attack: Malicious node with false 

routing information transmission claims that it has 

an optimized path to destination node. With this 

false claim, other nodes send their packets to the 

malicious node [12]. In AODV routing protocol, 

malicious node can perform this attack by sending 

a fake RREP packet to the source node. Figure 3 

shows a Blackhole attack example. Source node S 

attempts to communicate with destination node D. 

Also, suppose, node D sequence number value in 

node S routing table is 20. Node N1 by receiving 

RQ1 packet forwards that to node D. malicious 

node A by receiving RQ1 packet responses to 

node S with RP3 packet. Node S according to 

destination sequence number field selects 

introduced path by malicious node and transmits 

its data to invalid node Z. Above packets details 

are presented in Table 1. 

Table 1. The rreq/rrep packet in blackhole attack 
 RQ1 RQ2 RP1 RP2 RP3 

Source IP Address S N1 D N1 Z 
Destination Sequence 

Number 
20 20 21 21 30 

Origin IP Address S S S S S 
Destination IP Address D D D D D 

Hop Count 1 2 1 2 1 

 

4)Flooding RREQ Attack: Generally, RREQ 

packets will be broadcasted for new paths finding. 

Malicious node broadcasts because of network 

resources construction and alternatively many of 

fake RREQ packets. 

5.Features definition 
The appropriate feature selection for anomalies 

detection in routing process is the first and the 

most important action that must be performed. In 

this paper, nineteen features are used for anomaly 

detection in MANETs. These features are 

classified in four categories: 

1) Traffic data related features:Each node in 

the network can send, receive and forwards data 

packet. These actions against data packets can 

define three features. 

2) Path discovery related features:RREQ and 

RREP used for between source and destination 

nodes path finding and routing tables updating. 

By using these packets and various actions 

performed on them can define various features. 

3) Path interruption related features:Some of 

paths disrupted cause of node mobility. Paths 

disrupting will be a cause of RREQ and RREP 

packets missing. For snatched paths reparation in 

AODV protocol, RERR packet is used. 

Proportionate these attributes can define several 

properties. 

4) AODV protocol specific feature: Difference 

average between destination sequence number in 

received RREP packet and destination sequence 

number in transmitted RREQ packet can be 

defined as a feature in each node. 

The first class features are beneficial for data 

traffic anomaly behavior detection that can be due 

to a Denial of Service (DoS). The second class 

features are beneficial for attacks detection 

creating anomaly in network with routing protocol 

behavior change. The third class features indicant 

is seen routing faults rate in the network. Some of 

attacks alter routing faults rate through creating 

anomaly in the network. In Blackhole attack, 

malicious creates anomaly in network normal 

behavior by fake RREP packets that contains a 

great destination sequence number transmission. 

The fourth class features are beneficial for detect 

of this type of anomaly. In Table 2, name and 

description of each feature represented. 

6.Principal components analysis 
Principal component analysis (PCA) is a well-

known method for patterns analysis in data [9]. 

By PCA, the first principal component φ that 

shows data approximate distribution is calculated. 

Let  be an  data matrix, whose rows are 

the feature vectors and columns are the features: 

(1)  

Let,  is a column-center matrix of X: 

(2)  
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,
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Principal components of X are obtained by 

singular vector decomposition (SVD) [9] of 

matrix [7]: 

(3)  

whereU and V are left and right singular vectors 

of  matrix respectively, and  

is a diagonal matrix with singular values. In this 

paper, the quadruple  is called as s 

singular description of X and represents with . 

Table 2. The features 

Type Feature Description 

C
B

R
 T

ra
ff

ic
 NumSentCbrPkt Number of sent CBR data 

packets 

NumRecvCbrPkt Number of received CBR data 

packets 

NumFwdCbrPkt Number of forwarded CBR 

data packets 

R
o
u

te
 D

is
co

v
er

y
  

NumSentRReqPkt Number of sent RREQ 

packets 

NumRecvSameSrcRReqPkt Number of received RREQ 

packets with the same source 

address as the node 

NumRecvSameDstRReqPkt Number of received RREQ 

packets with the same 

destination address as the 

node 

NumRecvDiffSrcDstRReqPkt Number of received RREQ 

packets with the different 

source and destination address 

of the node 

NumFwdRReqPkt Number of forwarded RREQ 

packets 

NumSentSameDstRRepPkt Number of sent RREP packets 

with the same destination 

address as the node 

NumSentDiffDstRRepPkt Number of sent RREP packets 
with the different destination 

address of the node 

NumRecvSameSrcRRepPkt Number of received RREP 

packets with the same source 
address as the node 

NumRecvDiffSrcRRepPkt Number of received RREP 

packets with the 
differentsource address of the 

node 

NumFwdRRepPkt Number of forwarded RREP 

packets 

P
at

h
 D

is
ru

p
ti

n
g

  

NumSentRErrPkt Number of sent RERR 

packets 

NumRecvRErrPkt Number of received RERR 

packets 

NumFwdRErrPkt Number of forwarded RERR 
packets 

NumDropRReqPkt Number of dropped RREQ 

packets 

NumDropRRepPkt Number of dropped RREP 

packets 

P
ro

to
co

l 

S
p

ec
if

ic
 AvgDiffDstSeqNum Average difference at each 

time slot between destination 

sequence number of received 

RREP packet and stored 

sequence number in the node 

In this description, V is principal components and 

μ is a column-center vector of X. We can use the 

first principal component φ for describes X. Let, 

is covariance matrix of X: 

(4)  

Right singular vectors of X are equal to principal 

components of , also the kth special value of 

 is equal to the kth square of  matrix 

singular value: 

(5)  

where, V and  

are principal components matrix and eigenvalues 

matrix of X respectively. According to (5) 

specified that the equation can gain X singular 

description by analyze singular values of 

 matrix. 

7.Dynamic anomaly detection based on 

ipca 
In this section, we proposed an increasing 

principal components analysis method named 

IPAD for dynamic anomaly detection in 

MANETs. In this method, each time window  

contains several time slots. In each time slot , 

each node collects a  feature vector on its 

traffic. 

(6)  

where each  is a measurable feature. So, each  

time window, collects each node of  matrix 

from feature vectors. In this paper, to establishing 

normal profile and anomaly detection, 19 

mentioned features are used. 

A  feature vector is called normal if 

agrees with network normal traffic in  time 

window. Set of normal feature vectors in  time 

window is represented with  and set of 

whole normal feature vectors in  maximum time 

window before  is represented with . 

(7)  

IAPAD method contains three phases: Training, 

Detection and Updating from which any of these 

three phases are describe on resumption. 
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Training Phase: 

In this phase, each node collects  matrix 

from feature vectors by its traffic supervision at 

beginning, then scales each values of  

features to [0,1] slot. Finally,  first principal 

component calculating creates a network normal 

profile. Figure 4 shows the pseudocode of training 

phase. 

Normalization of feature vectors: 

The value of each feature vector can have a 

considerable difference with each other. So, when 

distance of between two feature vectors is 

calculated, the features with larges values 

conquest on features with lower values. For 

making sure about the whole of features, they 

have same affection on distance calculation, each 

 feature vector values must 

scale with in [0,1] slot. 

(8)  

That  and  are the smallest 

and greatest  feature values in  

respectively. 

 

procedure Training 

input:  

    A set of normal feature vectors )0(XN  

output: 

    A normal profile )0(P  = ( )0( , )0( , )0(maxd ) 

begin 

Scale each feature of )0(XN  to the range of [0,1] 

Obtain the column-centered matrix )0(ˆ
XN

 
Obtain the column-means vector )0(  

Compute the first principal component )0(  

for each feature vector )0(0 Xi Nx  do 

        Compute the projection distance ))0(,( 0 ip xd  

    end for 

 ))0(,(max)0( 0max ip
i

xdd   

end procedure 

Figure 4. The training phase 

 

Establishing a Normal Profile: 

For the normal profile creation, at first, each node 

generates  column-centered matrix for 

. Then by  matrix singular value 

decomposition calculates the first  principal 

component and each  feature vector's 

projection distance from is attained. 

(9)  

where  is   column-means vector. 

On resume, the maximum of projection distance 

of all  feature vectors from  is calculated 

and uses that for anomaly detection: 

(10)  

Finally, uses  triplet for  

normal profile creation. 

Detection Phase: 

In this phase, each node during each  time 

window collects  matrix from feature vectors 

by its traffic supervision. Then scale features 

values of each  feature vector by using 

minimum and maximum features values in 

 and then compares scaled feature 

vectors with  

normal profile to detect anomaly traffic. 

 

procedure Detection 

input: 

    A normal profile ))1(),1(),1(()1( max  tdtttP   

    A set of feature vectors )(tX  

output: 

    A set of normal feature vectors )(tXN  

begin 

)(tXN  

Scale each feature of )(tX  using min and max of )1( tNX  

for each feature vector )(tXxit  do 

        Compute the projection distance ))1(,( txd itp   

if )1())1(,( max  tdtxd itp  then 

 itNN xtXtX )()(   

end if 

end for 

end procedure 

Figure 5. The detection phase 

Anomaly Detection: 

For anomaly detection, each node calculates 

projection distance of each  feature 

vector from  that  is the first global 

principal component until  time window. If 

calculated projection distance were greater than 

,  would be detected as an anomaly 

feature vector: 

(11)  
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Figure 5, shows the pseudo code of detection 

phase. 

 

Normal Profile Updating Phase: 

In this phase, each node at each  time window 

ending, if normal network state is detected, 

updates normal profile in this time window by 

using normal feature vectors. Thus, first, add 

collected normal feature vectors in  time 

window to : 

(12)  

That  is set of collected normal feature 

vectors in  time window. Nodes mobility in 

MANETs is cause of topology similar to network 

behavior alternation. Each set of feature vectors 

shows the network state and its connection time. 

By considering to the rapid behavior changing of 

network, this feature vectors set cannot show the 

network state in further times well. So, weight to 

each set of feature vectors can be useful for 

dynamic anomaly detection. Assume,  

normal feature vector in  time window be 

collected, an oblivion relation calculate this 

feature vector weight in current  time window: 

(13)  

That  and  parameters is determined 

by a user. ∆T is time window length and  is 

network topology changing rate between  and  

time windows. Network topology changing rate is 

determined by using neighbor nodes number: 

(14) , 

That n is the number of whole nodes in the 

network. and  are neighbor nodes index 

in  and  time windows, respectively. Each 

node just uses a set of collected normal feature 

vectors in maximum m previous time window. 

weights be bounded by (15) relation: 

(15)  

If weight of one normal feature vector is lesser 

from a  threshold value, the feature vector will 

be deleted form  set. 

For normal profile updating, at first, each node by 

using relation (2), generates  column-

centered matrix for , then by  matrix 

singular value analysis, calculates the first  

global principal component and finally the 

maximum projection distance of whole 

 feature vectors from  is attained: 

(16)  

The  triplet shows  updated 

normal profile. In Figure 6, represent normal 

profile updating in each node. 

 

procedure Updating 

input:  

    A set of normal feature vectors )(tNX  

output: 

A normal profile ))(),(),(()( max tdtttP   

begin 

    for each feature vector )(tNx Xi   do 

        Update the weight )(twi  

if  )(twi
then 

 iXX xtNtN \)()(   

endif 

    end for 

Obtain the column-centered matrix )(ˆ tN X  

Obtain the column-means vector )(t  

    Find the global first principal component )(t  

for each feature vector )(tNx Xi  do 

        Compute the projection distance ))(,( txd ip 
 

    end for 

 ))(,(max)(max txdtd ip
i

  

end procedure 

Figure 6. The updating phase 

8.Increasing proximate components 

analysis based dynamic anomaly detection: 
In IPAD method, first global principal component 

calculating is accomplished strictly. In this 

method, at each time window ending for normal 

profile updating, a set of normal feature vectors in 

previous time windows is used. This problem is 

cause of calculating complexity and memory 

usage in crescent in each node. For this problem 

solution, an increasing proximate principal 

components analysis based method is proposed 

which named IAPAD that decreases calculating 

complexity and memory usage in each node. In 

this method, each node in current time window , 

calculates  proximate 

singular description for  normal feature 

vectors. The time window in this description,  

is number of normal feature vectors,  is the 
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matrix which contains  is the most important 

principal component,  is the matrix contains 

 the greatest special value and  is  

column-means vector. The  is the minimum 

value that relation (17) confirmed that: 

(17)  

where  and  are the number of features and 

 matrix special value, respectively.  

Named as proximate quality threshold bound and 

thus by using k the most important principal 

component can describe  percent of data 

dispersion. The set of proximate singular 

descriptions in maximum m time window before t 

is presented with : 

(18)  

Each node instead of  normal feature 

vectors set maintaining, and keeps  singular 

description set. 

 
Figure 7. IAPAD Description 

 

IAPAD method contains three phases: Training, 

Detection and Updating noted above are similar to 

IPAD method with a difference that instead of 

 first global principal component, used from 

 first proximate global principal component. 

For calculation of , first,  proximate 

covariance matrix for normal feature vectors in 

maximum m previous time window calculated 

[13]: 

(19)  

where is global column-means vector. 

(20)  

Value of n is equal to normal feature vectors total 

in maximum m time window: 

(21)  

 

Then, by matrix singular value analysis, the 

first  proximate global principal component is 

calculated. Figure 7 shows a description for this 

method. 

9.Time complexity analysis: 
In this section, the first  global principal 

component time complexity calculating in IPAD 

method and the first  proximate global 

principal component in IAPAD will be compared 

with each other.  

In IPAD method, in each t time window, each 

node, first, generates  column-centered 

matrix for . This matrix generation is done 

in time of , that n is normal feature 

vectors number average in each time window, 

then by  matrix singular value analysis, 

calculates the first  global principal 

component in time of . Therefore,  

calculating has  time complexity. 

In IAPAD method, in each t time window, each 

node, at first, calculates  proximate singular 

description for normal feature vectors in this time 

window. This singular description calculating is 

accomplished in time of . Then calculates 

 proximate covariance matrix by using 

singular description in maximum m previous time 

window. This covariance matrix calculating is 

accomplished in time of . Finally, by 

 matrix singular value analysis, calculates 

the first  proximate global principal 

component in time of . Therefore,  

calculating has  time complexity. Mention 

is require that and . 

10.Experiment results: 
In this section, at first, impact of routing attacks 

on MANETs performance will be studied, and 

then accomplished experiment results are 

described for proposed IPAD and IAPAD 
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performance evaluation. 

Simulation Environment: 

We conducted MANET simulations using the 

NS2 simulator [14]. In this simulation, CBR 

traffic model with 512-byte data packet length 

generated through cbrgen.tcl program and RWP 

[15] mobility model in a region dimensioned 

1000m×1000m and 5sec pause time, generated by 

the setdest program. The number of whole 

network nodes, includes 30 nodes. Table 3 shows 

a detail of simulation parameters represented. 

 

Table 3. Simulation Parameters 

Value Parameter 

10000(s) Simulation Time 
RWP Mobility Model 

5(s) Pause Time 
35(m/s) Maximum Mobility 

30 Maximum Connections 

2(Mbps) Maximum bandwidth 

1 Number of Malicious Nodes 
1000(m) × 1000(m) Simulation Area 

250(m) Transmission Rate 

CBR Traffic Model 

AODV Routing Protocol 

 

In RWP mobility model, each node for a specific 

time length (pause time) locates in a simulation 

region and after this time ending, a random 

destination selection with a steady speed moves 

from [0, maxspeed] slot to the destination. The 

node after reaching to a new location, positions 

there within pause time and then begins mobility 

process again. 

Figure 8 shows malicious node and a node of the 

network mobility model. In this figure, pause time 

5 seconds and speed bound [0, 35m/s] has been 

selected. Regarding to Figure 8(a) specified that 

malicious node attends steady in different location 

of simulation environment. Therefore, any 

anomaly behavior from malicious affects entire 

network. This local distribution is also seen for 

other network nodes (Figure 8(b)). 
 

 
(a) 

 
(b) 

Figure 8. Mobility model in RWP: a) Malicious Node b) A 

Node of The Network 

Impact of routing attacks on Network 

Performance 

In this section, we will study about impact of 

routing attacks on MANET performance by using 

NS2 simulator. There are many parameters such 

as End-To-End Delay and Packet Delivery Ratio 

for MANET performance measurement [16]. End-

To-End Delay refers to the time taken for a packet 

to be transmitted across a network from source to 

destination. The packet delivery ratio of a receiver 

is defined as the ratio of the number of data 

packets, which actually received over the number 

of data packets transmitted by the senders. 

Routing attacks are cause of network performance 

decrement by anomaly creation in the network. 

Figure 9 shows, impact of blackhole attack on 

End-To-End Delay parameters and Packet 

Delivery Ratio represented respectively. As seen 

on this figure, in the above attack occurrence time, 

network performance decreased noticeably. 
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(b) 

Figure 9. Impact of Blackhole Attack: a) On the average 

End-To-End Delay Parameter b) On the average Packet 

Delivery Ratio 

 

Performance Evaluation 

To establish the normal profile, a set of feature 

vectors are collected by each node of network 

normal traffic. This set of feature vectors 

collecting time length are considered 1000sec and 

time slot length for any feature vector collecting 

considered 5sec. One of the nodes selected is a 

malicious node. This node, accomplished rushing, 

neighbor, blackhole and flooding RREQ attacks is 

distinctly in 3500-6000sec-time interval. An 

experiment, used for normal feature vectors sets 

and proximates singular descriptions in maximum 

m=5 previous time window, and the length of time 

window is also selected ΔΤ=200s. 

For performance evaluation of anomaly detection 

methods, two measures used detection rate (DR) 

and false alarm rate (FAR). Detection rate is a 

percent of anomaly feature vectors that have been 

detected successfully. False alarm rate is a percent 

of normal feature vectors that have been detected 

as anomaly feature vectors inaccuracy.  

Figure 10 shows detection rate and false alarm 

rate averages in IPAD and IAPAD have been 

compared within different values of time window 

length ΔΤ=500, 400, 300, 350, 200, 150, 100s 

represented detection rate and false alarm rate in 

this figure. This calculated as blackhole, rushing, 

neighbor and flooding RREQ attacks detection 

rate and false alarm rate averages. 

Regarding to the above figure specified that by 

time window length decrement or by the other 

hand, by normal profile rapid updating, detection 

rate increases. In addition, IAPAD method has 

similar performance with IPAD method and it has 

lesser time complexity and lesser usage memory. 

Table 4 shows detection rate and false alarm rate 

averages in IAPAD method has been compared by 

the m parameter different values. Regarding to 

this table specified that by m value decrement, for 

normal profile updating used from lesser singular 

description. Therefore, the updated normal profile 

cannot model current time network normal traffic 

well with regarding to the low number of singular 

description, false alarm rate increased. By m value 

increasing, using from old singular descriptions to 

normal profile is updated. Therefore, the updated 

normal profile cannot model current time network 

normal traffic well with regarding to the high 

number of old singular descriptions, and detection 

rate are decreased. 

In Figure 11, for one of network nodes, feature 

vectors projection distance from the first 

proximate global principal component during 

blackhole attack represented. In 3500-6000sec-

time distance, projection distance of many 

collected feature vectors during each time window 

from the first proximate global principal 

component calculated to its prior time window is 

greater than a threshold bound. So, this feature 

vectors detected as anomaly and above time 

distance is considered as attacks time distance. 

Figure 12 shows detection rate and false alarm 

rate averages in IAPAD method compared with 

each other through different time window length 

values. Regarding to this figure, specified that by 

time window length decrement to 200 seconds, 

detection rate increases noticeably. For time 

windows with under 200sec, detection rate against 

false alarm rate is so fiddling. So, in accomplished 

experiment, time window length selected as 

ΔΤ=200.  

 

 

Figure 10. Detection rate and false alarm rate averages in 

IPAD and IAPAD 
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Table 4. Detection rate and false alarm rate averages in 

IAPAD 

m Rushing Neighbor Blackhole Flooding 

DR FAR DR FAR DR FAR DR FAR 

1 100 36.07 100 29.02 100 30 100 31.21 

3 95.83 8.76 97.5 6.06 95.42 5.99 95.17 7.81 

5 
95.83 3.27 96.53 2.63 92.22 2.29 92.23 3.16 

10 87.5 1.38 93.75 2.02 85 1.13 89.95 1.80 

 

 

 

Figure 11. Projection distance from the first proximate 

global principal component during blackhole attack 
 

 

Figure 12. Detection rate and false alarm rate averages in 

IAPAD method compared with each other by different 

time window length values 

 

Cumulative Percent Variance (CPV) [17] is a 

standard that represents the described variance 

percent by the most important principal 

components. In fact, complex variance percent 

determines importance level of each principal 

component to complex variance percent 

calculating for each i principal component used 

the relation (22): 

(22) 
 

where  is special value corresponding with ith 

principal component. 

 

 

Figure 13. CPV average in detection phase represented 

for each principal component in IAPAD method 

 

Figure 13 shows, cumulative percent variance 

average in detection phase represented for each 

principal component in IAPAD method. 

Regarding to this figure specified that the first 

principal component describes only 36.46 percent 

of total variance. Therefore, for better data 

dispersal modeling, it is necessary the second 

principal component considered with 25.45 

percent of total variance in proximate singular 

description calculation time. In this face, with k=2 

principal component can describe 69.91 percent of 

data dispersal. In accomplished experiment, 

threshold bound of approximation quality 

considered equal to . 

Table 5 shows impact of updating in performance 

on the IAPAD method represented for various 

type of attacks. Regarding to this table, the 

detection rate and false alarm rate averages in 

IAPAD method in the face of normal profile 

updating are 94.20 and 2.84 percent, respectively 

and in the face of nonupdating are 59.72 and 1.70 

percent in respectively.  
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Table 5. Impact of updating in performance on the 

IAPAD method 

 
With Updating Without Updating 

DR FAR DR FAR 

Rushing 95.83 3.27 38.60 0.64 

Neighbor 96.53 2.63 74.60 2.88 

Blackhole 92.22 2.29 58.4 1.32 

Flooding 92.23 3.16 67.28 1.98 

Average 94.20 2.84 59.72 1.70 
 

Figure 14 shows detection rate and false alarm 

rate in IPAD, IAPD and WPCA [7] methods 

compared with each other. Regarding to this 

figure specified that detection rate average in 

IPAD and IAPAD methods is 4/40 and 3/46 

percent better than WPCA method, when false 

alarm rate average in WPCA method is 0/53 and 

0/35 percent better than IPAD and IAPAD 

methods. 

Table 6 shows detection rate and false alarm rate 

averages in IPAD and IAPAD and WPCA 

methods compared with each other by the 

breakdown of each rushing, neighbor, blackhole 

and flooding RREQ attacks. 
 

 
(a) 

 

 

(b) 

Figure 14. Comparison of the performance of IPAD, 

IAPD and WPCA: a) average detection rate b) average 

false alarm rate. 

Table 6. Comparison of the performance of IPAD and 

IAPAD and WPCA methods 

 Rushing Neighbor Blackhole Flooding 

DR FAR DR FAR DR FAR DR FAR 

IPAD 
98.33 4.6 96.53 2.84 91.88 2.35 93.83 2.27 

IAPAD 

95.83 3.27 96.53 2.63 92.22 2.29 92.23 3.16 

WPCA [7] 
90.83 2.18 95.34 2.22 86.52 2.39 90.25 3.18 

 

11.Conclusion 
Regarding to dynamic topology in MANETs, the 

cause of alternation in network behavior, using 

from a predefined normal profile cannot describe 

network behavior well. Therefore, it is necessary 

to update normal profile coincident with network 

nodes and topology behavior alternations. In this 

paper, two increasing principal components 

analysis based on methods named IPAD and 

IAPD proposed for dynamic anomaly detection in 

MANETs. Proposed methods contain 3 phases: 

Education, detection and normal profile updating. 

In IPAD method, in education phase, by using 

normal feature vectors and principal component 

analysis, network traffic usual profile will be 

created. In detection phase, during each time 

window, a set of feature vectors to be collected 

and anomaly feature vectors based on their 

projection distance detected from the first global 

principal component. In the updating phase, in 

each time window ending, usual profile will be 

updated by using normal feature vectors in this 

time window and previous time windows. 

Updating is accomplished by using increasingly 

principal components analysis and an oblivion 

relation. IAPAD method is similar to IPAD 

method with this difference that any node in any 

time window calculates a proximate singular 

description of normal feature vectors in the time 

window. In addition, instead of the first global 

principal component used from the first proximate 

global principal component for anomaly feature 

vectors detection. Usual profile updated by using 

proximate singular description in current and 

previous time windows. For MANETs 

implementation and also rushing, neighbor, 

blackhole and flooding RREQ attacks used from 

NS2 simulator. Routing attacks are the cause of 

network performance decrement through creating 

anomaly in the network. By using the End-To-

End Delay and Packet Delivery Rate parameters, 

impact of above attacks network performance is 

studied. The performance evaluation of proposed 

IPAD and IPAD methods used two standards, 
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which  are detection and false alarm rate. 

Regarding to the accomplished experiment results, 

IAPAD method has a similar performance with 

IPAD method when it has less time complexity 

and usage memory.  

Time windows length in the usual profile updating 

time can be affective on the detection rate and 

false alarm rate increment of decrement. The 

IAPAD method performance is evaluated by 

various values of time window length. Regarding 

to experiment results in this method, ΔΤ=   s 

time window length establishes a better balance 

between detection rate and false alarm rate. In 

IAPAD method for proximate singular 

description, calculation is used for k the most 

important principal component. Using standard of 

Cumulative Percent Variance (CPV) importance 

level of each principal component in detection 

phase is calculated. Regarding to experiment 

results in normal face, k=2 principal components 

can describe 61.91 percent of data dispersal. 

Various experiment accomplishments, 

performance of IPAD and IAPAD methods are 

compared with WPCA method for rushing, 

neighbor, blackhole and flooding RREQ attacks 

detection. Experiment results show that detection 

rate average in IPAD and IAPAD methods 

respectively 4.40 and 3.46 percent better than 

WPCA method. False alarm rate average in 

WPCA method is only 0.53 and 0.35 percent 

better than IPAD and IAPD methods.  
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