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Abstract 

Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on 

Riemannian manifolds. These approaches are used to provide the pre-requisites for applying the standard 

machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to a high-

dimensional feature space without considering the intrinsic geometry of the data points. Projection to tangent 

spaces truly preserves topology along radial geodesics. In this paper, we propose a method for extrinsic 

inference on Riemannian manifold based on the kernel approach. We show that computing the Gramian 

matrix using geodesic distances, on a complete Riemannian manifold with unique minimizing geodesic 

between each pair of points, provides a feature mapping that is proportional with the topology of data points 

in the input space. The proposed approach is evaluated on real datasets composed of EEG signals of patients 

with two different mental disorders, texture, and visual object classes. To assess the effectiveness of our 

scheme, the extracted features are examined by other state-of-the-art techniques for extrinsic inference over 

symmetric positive definite (SPD) Riemannian manifold. The experimental results obtained show the 

superior accuracy of the proposed approach over approaches that use the kernel trick to compute similarity 

on SPD manifolds without considering the topology of dataset or partially preserving the topology.  

 

Keywords: Kernel Trick, Riemannian Manifold, Geometry Preservation, Gramian Matrix. 

1. Introduction 

Many problems in computer vision and signal 

processing lead to handling non-linear manifolds. 

Two different approaches in analysis over 

manifolds are reported in the literature. In one 

approach, the data points lie on a non-linear 

manifold that is embedded in R
n
. The other 

approach corresponds to the cases where the data 

points do not form a vector space but lie on a non-

linear manifold with a known structure. In the 

former approach, the structure of manifolds is 

unknown; therefore, the manifolds are modeled by 

graph, and the geodesic distances are 

approximated by the shortest path on the graph. 

The manifold learning techniques such as locally 

linear embedding (LLE) [45], Hessian LLE 

(HLLE) [43], local tangent space alignment 

(LTSA) [44], Laplacian eigenmap (LE) [46], non-

negative patch alignment framework (NPAF) 

[47], and Isomap [49] are some methods of this 

approach that try to extract low-dimensional 

manifold from high-dimensional data while the 

topological structure of the manifold is preserved. 

The difference between these methods is in the 

geometrical property that they try to preserve. The 

latter approach that appears in many problems of 

computer vision consists of analysis over 

manifolds with well-studied geometries. The exact 

geometry of these manifolds can be achieved by 

closed-form formulae for the Riemannian 

operations [36]. Orthogonal matrices that form 

Grassmann manifold, 3D rotation matrices that 

form a special orthogonal group (SO(3)), and 

normalized histograms that form unit n-sphere 

(S
n
) are some instances of the latter approach. The 

symmetric positive definite (SPD) matrices are 

another example that form a Riemannian 

manifold. Covariance region descriptors [1, 3, 5, 

6, 9, 23, 25, 26, 28, 30], diffusion tensors [15], 

and structure tensors [36] provide SPD matrices in 

the computer vision and signal processing 

applications.  

http://dx.doi.org/10.22044/jadm.2017.1000
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Since SPD matrices can be formulated as a 

Riemannian manifold [5], classical machine-

learning methods that assume data points form a 

vector space have to deal with some challenges to 

be applicable on this manifold. Projecting 

manifold data points to tangent spaces using 

Riemannian log map [5] and embedding into 

Reproducing Kernel Hilbert Space (RKHS) using 

kernel functions [3, 7, 35] are two existing 

approaches in the literature to address the above 

issue. The Riemannian logarithmic map projects 

points lying over the manifold to the Euclidean 

space; therefore, the Euclidean-based learning 

techniques can be applied to the manifold data 

points. Iterative projections by Riemannian 

exponential and logarithmic map in this approach 

impose computational load to the learning 

process. On the other hand, approximating true 

geodesic distance between manifold points using 

associated Euclidean distance in tangent space 

preserves the manifold structure partially. 

To overcome these limitations, using the kernel, 

the latter approach is applied to implicitly map 

manifold points into RKHS using the kernel 

function. The classical kernel functions do not 

consider the topology of data points on the 

manifold. Using the Euclidean distance in 

computing dissimilarities on manifolds may 

corrupt the intrinsic geometry of manifolds in 

feature space. 

Harandi et al. [7] and Jayasumana et al. [35] 

considered the geometry of the manifold of SPD 

matrices by computing the similarities based on 

the geodesic distances. Using Gaussian kernel 

based on distances computed using different 

Riemannian metrics is the proposed approach in 

these two research works. The drawback of this 

approach is missing the non-linear structure of the 

data points in the feature space resulted by 

Gaussian kernel. 

Vemulapalli et al. [52], Wang et al. [53], and 

Huang et al. [54] addressed the issue of learning 

over Riemannian manifold as a kernel-learning 

and metric-learning problem. All the proposed 

approaches are based on projecting all the data 

points in a single tangent space using the 

Riemannian log map. Vemulapalli et al. [52] 

considered the topology of data points in input 

space and their discrimination in feature space in 

the kernel-learning process. The base kernels that 

they applied in the learning process were based on 

projecting all the points in a single tangent space. 

In addition, using LEM_RBF [52] as a base kernel 

in their proposed approach leads to a non-linear 

feature space, while the geometry of the feature 

space is not considered in their proposed 

approach.  

The Wang et al.’s proposed approach [53] for 

learning over SPD manifold is relied on projecting 

the data points to a tangent space and using linear 

discriminant analysis and partial least square in 

the resulting Euclidean space. 

Huang et al. [54] addressed the learning over 

Riemannian manifold as a metric learning 

problem. They projected all the data points in a 

single tangent space, and then projected the data 

points in another Euclidean space with more 

discriminability.  

All these methods inherit the shortcomings of 

projection to a tangent space approach. 

Due to the smooth changes of labels on the 

manifolds that were confirmed by the 

compactness hypothesis, preserving the topology 

of manifolds in projection to Euclidean space is 

effective on the efficiency of the classical learning 

methods. Therefore, in this work, we try to 

provide the pre-requisites for applying the 

classical machine-learning methods on SPD 

manifolds by learning a kernel that preserves the 

geometry of manifolds. The concept of preserving 

geometry may incorrectly suggest manifold 

learning techniques. Since the main challenge of 

manifold learning techniques is preserving 

geometry, to clarify the distinction between 

geometry based kernel on SPD manifold and 

manifold learning techniques on a non-linear 

manifold with specified geometry, in this work, 

some experiments were done on the SPD 

manifold.  

The main contribution of this paper is to introduce 

an appropriate base kernel over the manifold of 

SPD matrices with the aim of considering the 

topology of data points in input space and its 

geometry in feature space. We use the properties 

of SPD Riemannian manifolds in the proposed 

kernel. The exact geodesic distance between any 

two points is computable using Riemannian 

metric. We compute Gramian matrix of 

projections at feature space. This method uses the 

geodesic distance to preserve the topology of data 

points in the feature space, the same as topology 

on the manifold. All kernel-based methods that 

are formulated based on the inner product of 

samples are applicable to implicit feature space by 

applying Gramian matrix instead of explicit 

coordinate of samples. The proposed kernel over 

SPD manifold is used for extrinsic inference. 

This paper is organized as what follows. The 

related literature is reviewed in section 2. In 

section 3, we review the mathematical 

preliminaries that are required to become familiar 
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with Riemannian geometry. In section 4, we 

describe our contribution for providing the pre-

requisites for learning over the SPD Riemannian 

manifold including computing the Gramian matrix 

of training data and its generalization to test 

samples. The experiments on real datasets are 

presented in section 5, and are discussed in 

section 6. Finally, we conclude this paper in 

section 7. 

  

2. Related works 

There is a rich literature regarding kernel learning 

and also manifold learning. A thorough review on 

these topics is beyond the scope of this paper. 

Recently, different useful applications have used 

covariance matrices for describing objects. These 

applications lead to applying machine-learning 

methods on an SPD manifold. In this study, we 

review some research works that rely on learning 

on SPD manifold. 

As mentioned in section 1, learning on 

Riemannian manifolds relies on transferring the 

manifold data points to a vector space [3, 5, 7]. At 

the approach that linearization is done by mapping 

tangent spaces using the Riemannian log map, the 

true geodesic distance between the points lying on 

different radial geodesics would not be preserved. 

Therefore, the intrinsic geometry is not preserved 

completely in projection to the tangent space. 

Porikli et al. [5, 27, 29, 31] applied the ensemble-

based techniques to overcome the weakness of 

projection to tangent space for classifying the data 

lying on the SPD Riemannian manifold. 

Computing geometric mean that is the base point 

of weak learners imposes a computational load to 

the learner. Barachant et al. [9] projected the data 

points to the tangent space at global geometric 

mean, and then used classical classifiers for 

discrimination. It is obvious that mapping all 

points to a single tangent space in the case that all 

the data points do not lie on the same radial 

geodesic cannot preserve the global topology of 

the dataset, and may bring poor results. In another 

research work, Barachant et al. [3] used a 

combination of two existing approaches for 

linearizing Riemannian manifolds. They applied a 

kernel [55] that was based on the geometry of the 

data, and examined it in BCI application. They 

applied Riemannian metric to compute the inner 

product in the tangent space at geometric mean. 

Unfortunately, in the case that the data points are 

mapped globally to a single tangent space, the 

inner product between points on different 

geodesics are not induced from the true geodesic 

distance between them and depends on the base 

point. Therefore, the implicit mapping of their 

proposed kernel can change the intrinsic topology 

of the manifold. Harandi et al. [7] proposed a 

kernel that applied a true geodesic distance 

between points to compute the inner product in 

the Hilbert space. Applying an exponential map 

with an arbitrary bandwidth was their choice in 

computing the inner product. Sensitivity to 

kernel’s bandwidth [2] and choosing this kernel 

without fine tuning of its parameter can change 

the geometry of the dataset in feature space such 

that degrade the performance. Since the proposed 

kernel puts the data points on the surface of a 

sphere, applying the methods that rely on 

Euclidean metric can bring poor results in the 

resulting non-linear feature space. Early research 

works show that considering the geometry of data 

points in feature space can improve the accuracy 

of classification [32]. A traditional example of 

using kernel for linearization is kernel PCA. 

Applying kernel PCA as a method for 

dimensionality and noise reduction on non-linear 

data points relies on the assumption that the data 

points are flattened in feature space using the 

kernel function. The kernel type and its 

parameters are arbitrary and mainly motivated by 

the hope that the induced mapping linearizes the 

underlying manifold [8]. Since the geometrical 

interpretation of the various kernels is difficult, 

and strongly depends on its parameters, applying 

inappropriate kernels may cause unfortunate 

results [2], [34]. In the case that the local principal 

components of the feature space is not in the 

direction of global principal components of full 

manifold, the kernels do not linearize accurately; 

therefore, poor results are obtained. For example, 

Gaussian kernel, as defined in (1), brings a non-

linear feature space. It puts the data points on the 

surface of a sphere and modifies the Euclidean 

distance in such a way that the samples that are far 

apart become orthonormal, and the points that are 

very close to each other tend to lie on the same 

point. 

 )  /||X-X||exp(),( 22

2 ji ji XXK  (1) 
 

By changing the value of the variance parameter 

of Gaussian kernel, the geometry of the feature 

space changes accordingly [2]. Since the actual 

geometry of data points may not be preserved 

through linearization by this kernel, the learners 

that are trained at the transformed space may 

bring poor results [2], [8]. 

The weakness of projection to tangent space in 

mapping to Euclidean space, and the drawbacks of 

classical kernels show the necessity of proposing 

appropriate techniques for linearizing non-linear 

manifolds with a known structure. The 



Shiry Ghidary et al./ Journal of AI and Data Mining, Vol 6, No 2, 2018. 
 

324 

 

compactness hypothesis that states similar objects 

has a close representation, and smooth changes of 

labels over manifold are our motivations for 

preserving geometry in projection to feature 

space. 

 

3. Background 

In this section, we review some basic concepts in 

Riemannian geometry that are necessary for 

reading the paper. We introduce the metric, which 

is used on SPD matrix space in this paper and its 

associated log  and exp map.  

3.1. Mathematical preliminaries 

A homeomorphism is a continuous bijective map 

whose inverse is continuous. A topological 

manifold is a connected Hausdorff space that for 

every point of the manifold, there is a 

neighborhood U , which is homeomorphic to an 

open subset V of
dR . The homeomorphism 

between these two sets U  and ):( VU  is 

called a (coordinate) chart. A family of charts that 

provides an open-covering of the manifold is 

called an atlas, },{  U . A differentiable 

manifold is a manifold with an atlas such that all 

transitions between the coordinate charts are 

differentiable of class 
C . 

)()(:
1

  UUUU 



 

(2) 
 

 

where,   and  are the coordinate charts 

corresponding to the 
U and 

U  neighborhoods 

on the manifold. A Riemannian manifold g)(M,  

is a differentiable manifold M that is endowed 

with a smooth inner product (Riemannian metric

),( vug
) on each tangent space MTX . The inner 

product (Riemannian metric) in Riemannian 

manifolds is a metric that allows measuring 

similarity or dissimilarity of two points on the 

manifold [11, 12, 17]. 
A curve MRI :  is a geodesic if the rate 

of change of   has no component along the 

manifold for all It or  is 0 [22]. Given a 

vector v  in the tangent space MTX , there is a 

geodesic )(t that is characterized by its length, 

where geodesic issued from X)0( , and

||||/ vv . Two points on the manifold may 

have multiple geodesic between them but the one 

that minimizes the length is called the minimizing 

geodesic. In a geodesically complete manifold, 

each pair of points admits minimizing geodesic. 

Minimizing geodesic between points may not be 

unique [22]. 

The exponential map, )(exp vX , maps a tangent 

vector MTv X into a point Y  on the manifold. 

Its inverse is called logarithm map, )(log YX , 

which maps a point on the manifold to a point at 

tangent space. 

The point lying on the geodesic that passes 

through X with tangent vector v  has
2/1,||||),(  vvvYXdist .  

The radial geodesics are all the geodesics that pass 

through X . Normal coordinates with center X  is 

the local coordinates defined by the chart 

)exp,( 1

XU . Normal coordinates can preserve the 

distances on radial geodesics. For example, a 

sphere that is unfolded onto a plane in normal 

coordinates can preserve the distances on great 

circles [13, 19, 22]. 

3.2. Mappings and distance in SPD matrix 

space 

In this paper, we use the covariance matrices as 

the descriptors of data points. The Riemannian 

metric, exponential and logarithm map, and 

geodesic distance on symmetric positive definite 

matrix space are defined as what follow. 

An invariant Riemannian metric or inner product 

on the tangent space of the symmetric positive 

definite matrices is defined as ([14, 15, 24]): 

)(, 2/12/1 1   zXyXXtracezy X
 (3) 

 

where, y and z are two tangent vectors in the 

tangent space formed at X point over Riemannian 

manifold. The Riemannian exponential map is 

defined as:  
2/12/12/12/1 )exp()(exp XyXXXyX

  (4) 
 

where, y is a tangent vector and X is a base point 

over the manifold. The Riemannian log map on a 

point on the Riemannian manifold is defined as: 
2/12/12/12/1 )log()(log XYXXXYX



 

(5) 

where, X andY are two points on the manifold, and 

matrix exponential and logarithm are calculated as:  

TT

k

k UDUUDUk  




,)exp(!/exp
0

 

T

Tk

k

k

UDU

UDUkI









 ,)log(/)()1(log

1

1

 

(6) 

In (6), it is assumed that  is decomposed into 

eigenvalues and vectors. Note that the exp
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operator on matrices always exists, while the log

operator is only defined on symmetric matrix with 

positive eigenvalues [24]. 

The distance between two points on SPD 

manifold associated with the Riemannian metric is 

computed by:   

XXXG YYYXd  )(log),(log),(2  

))((log 2/12/12  YXXtrace  

(7) 

 

In the tensor space with the metric (3), there is 

one and only one minimizing geodesic between 

any two tensors. The Riemannian log map is 

defined uniquely at all points on the manifold, and 

the exponential map is global diffeomorphism [8, 

15]. 
 

4. Global geometry preserving kernel  

In this section, we describe our method for 

providing the pre-requisites for learning in the 

space of SPD matrices using the properties of 

Riemannian manifolds. This mapping implicitly 

transfers the data points to a vector space, while 

the intrinsic geometry of the dataset is preserved 

by preserving the geodesic distances. First, we 

describe the proposed algorithm, which is used to 

compute the Gramian matrix of a set of points on 

the SPD Riemannian manifold at an implicit 

linearized space, and then investigate its 

generalization to unseen cases. We call the 

proposed kernel GGPK, which is the abbreviation 

of the global geometry preserving kernel.  

4.1. Flattening an SPD Riemannian manifold 

Let 
N

iiXP 1}{  be the set of points on a 

Riemannian manifold. The geodesic distance 

between two points iX and jX on Riemannian 

manifold is computed by mapping to tangent space 

at one of these points and computing the length of 

the tangent vector that joins )(log iX X
i

to 

)(log jX X
i

, which is given in (7). Assume that the 

pairwise squared geodesic distances stored in an 𝑁-

by-𝑁 matrix GD  is given as:  

NjijiGG XXdD  ,1

2 )],([  (8) 

 

where, 𝑑𝐺 denotes the geodesic distance between 

two points on the manifold. The symmetric positive 

definite matrix space with the associated metric is a 

geodesically complete manifold, and has the 

structure of a curved vector space [14]. Satisfaction 

of the manifold assumption implies that defining 

geometry based on distance along the manifold and 

preserving it in feature space can bring appropriate 

projection for classification. Therefore, the distance 

between the two points )( iX and )( jX in the 

feature space is defined as:  

GE

jiG

jijiE

DD

XXd

XXXXd







),,(

||)()(||))(),((

2

2

2

2 
 

(9) 

 

where, iX and jX are the points on the manifold, 

 is an implicit feature mapping from SPD 

Riemannian manifold to a Euclidean space for 

developable manifolds or a pseudo-Euclidean 

space for non-developable manifolds, Gd  denotes 

the geodesic distance on the manifold, and Ed  

denotes the Euclidean distance in the feature 

space, which is L2 norm of dissimilarity. GD

denotes a matrix of geodesic distances on SPD 

manifold that is assigned to the matrix of 

Euclidian distances between points in the feature 

space, ED . This assignment is done implicitly 

using the kernel function.  We recall that: 









)()(2

)(),()(),(

)()(),()(

||)()(|| 2

2

ji

jjii

jiji

ji

XX

XXXX

XXXX

XX









 

(10) 

 

Thus: 

2/))(),(

)(),())(),(((

2/))(),()(),(

||)()((||)()(

2

2

2









jj

iijiE

jjii

jiji

XX

XXXXd

XXXX

XXXX









 

(11) 

Since  function, and consequently, the 

coordinate of points in the feature space are 

unknown, computing the inner product between 

any two points in the projected space is done 

implicitly using double centering [8], [49], [51] on

ED . The double centering is performed by 

subtracting the means of the elements of each row 

and column, and adding the mean of all of the 

entries of ED to the corresponding element of ED

[8]. )( iX is assumed to be centered. This 

assumption has no effect on the distances: 

2

2

2

2

2

||))(())((||

||)()(||))(),((

cXcX

XXXXd

ji

jijiE








 

(12) 

 

where, c is a constant translation vector. Thus we 

have: 
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
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
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
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
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




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N
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j
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N

j
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N

j
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N

j
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N

j
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NXXXX

NXX

NXXXX

NXXXX

NXX
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1

1

1

1

2

2

1

1

2
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/)(),(2)(),(
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/||)()(||

/))(),(()(
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









 

(13) 

where, N denotes the number of data points, and 

)(ir  denotes the mean of the i th
 row of ED . Since 

ED is a symmetric matrix, the mean of the j th
 

column, )( jc , can be computed as: 








N

i

ii

jjc

NXX

XXj

1

/)(),(

)(),()(




 

   

(14) 

and the mean of all of the entries of ,ED  is: 

 

NXXNXX

NXX

NXXd
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N

j
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N

i
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N

i

N

j
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N

j

E

/)(),(/)(),(
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2

1 1

2

1 1

2
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
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
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 
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Thus: 

NXX
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N

j
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j
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N

i
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i

N

j

jiji

jj

iicr

/)(),(

/0),(2/)(),(

/)()(),()(

)(),(

)(),()()(

1

11

2

1 1











 




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
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(16) 

Using (11) and (16), we have: 

))()(

))(),(((2/1)(),( 2






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ji

XXdXX

cr

jiEji  
  

(17) 

 

Since  𝐷𝐸 and the average of each row, column, and 

all the elements of  𝐷𝐸 are computable, therefore, an 

N-by-N Gramian matrix can be defined as: 

Njiji XXG  ,1])(),([     

(18) 

Gramian matrix, 𝐺, which can be computed based 

on the computable terms, is a similarity measure on 

feature space, induced from intrinsic dissimilarity in 

input space, and can be used as a non-parametric 

kernel in kernel-based methods. 

4.2. Generalization to test points 

To generalize the proposed non-parametric kernel to 

unseen data, we need to update the components that 

are used in computing the kernel in learning process. 

To improve the computational complexity of 

generalization to test samples, the mean values of 

rows, columns, and all the entries of the 𝐷𝐸 matrix 

for the training dataset are saved.  

The inner product between a test sample X and the 

previous training samples is computed by updating 

the geodesic and Euclidean distance matrices: 

GE

NjijG

iGG

G
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XXd

XXdD
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
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),(][
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2
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(19) 

 

Thus the mean values of each row (𝜇 ), column (𝜇 ), 

and the mean of all the entries of 𝐷𝐸 (𝜇) are updated 

as follow: 
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where, )(ir  denotes the mean of the i th  row and  

j th column. The mean values of row and column, 

which corresponds to the new sample, are computed 

as: 
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(21) 

 

and the inner product corresponding to the new 

sample and the other observations is computed as 

follows: 
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(22) 

In the case of developable manifolds, since 

manifolds have isometry with Euclidean space, 

double centering brings inner product in a Euclidean 

space. Assuming T

NvvV ]....[ 1 , where Rvi  ,  

,1 Ni  so: 
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As 0GVV T thusG matrix satisfies the Mercer’s 
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condition, and can be used as a kernel for mapping 

to RKHS. In the case of non-developable manifolds, 

due to the intrinsic curvature of the manifold, the 

Gramian matrix does not satisfy the Mercer’s 

condition. 

 Using the proposed topology preserving kernel that 

induces similarities from the distance along the 

manifold, every kernel-based method that is 

formulated using the inner product of samples can 

be used for inference (i.e. clustering, classification, 

…) on the proposed implicit feature space. For 

example, the kernel support vector machine (SVM) 

[10], [18], [21], which is a suitable choice for 

complex datasets due to its robustness, was used in 

our experiments. Applying other kernels without 

considering their type and parameters that 

determine the topology of data points in feature 

space may bring undesirable overlapping of 

points, and may produce weak results. 

 

5. Results 

We applied the linear discriminant analysis (LDA) 

[50] and SVM as the discriminative methods 

using different kernels on several real datasets; the 

characteristics of datasets and also the 

experimental results are reported in this section. 

To clarify the difference between the proposed 

kernel over SPD manifold and the classical 

manifold-learning techniques, a comparison 

between them is made. 

 

5.1. EEG datasets and pre-processing 

Two-class EEG datasets are used in this work. The 

participants of this study were 43 children and 

adolescents (21 cases of ADHD, 22 patients with 

BMD) ranged from 10 to 22 years old. The 

diagnosis is based on the DSM_IV criterion [4], 

[20]. For each patient, within three minutes, the EEG 

signals were recorded in eyes-open and eyes-closed 

resting conditions. These signals were recorded 

using 22 electrodes according to the 10-20 

international recording system. Impedances of 

electrodes were lower than 10 KΩ through the 

recording, and the sampling rate was 250 Hz. In the 

pre-processing phase, the signals were filtered by a 

Butterworth low-pass filter (order 7) with 40 Hz cut-

off frequency to remove the additive high-frequency 

noises [20]. 

The feature vectors were generated by estimating the 

empirical covariance matrix between channels [9].  

In the cases that covariance matrices had 

eigenvalues less than or equal to zero, we changed 

the eigenvalues such that all of them became 

positive, and scaled them such that the distance 

between eigenvalues was preserved. For this 

purpose, we added the absolute value of the 

minimum of eigenvalues to all the eigenvalues, 

increased them with a small positive value, and 

reconstructed the matrix with this new eigenvalues 

and previous eigenvectors. 

T
UCn
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(24) 

where,
TUUC  ,  is a diagonal matrix whose 

diagonal entries are the eigenvalues of C  (denoted 

as i ) and U is the matrix of eigenvectors of C . 

is a small positive value. 

With this modification, the distance between 

different eigenvalues are preserved, and the matrix 

becomes positive definite. 

To remove the dependency between the train and 

test samples, the leave-one-out cross-validation 

method was performed. In each round, one patient 

was dedicated as test set and the others were 

considered as a validation and train set [20]. 

Ensemble-based techniques, as a promising 

approach for improving analysis on EEG datasets, 

are applied in different applications such as BCI, and 

mental disorder recognition [39- 41]. These 

techniques improve the accuracy and stability of the 

algorithms. Avoiding over-fitting and reducing 

variance are some other advantages that have been 

reported for ensemble-based techniques. In 

experiments on the EEG datasets, different 

classifiers were aggregated using an ensemble-based 

technique. These classifiers were trained on different 

subsets of EEG channels. Since the high 

dimensionality of the covariance matrix of all 

channels leads to the problem of curse of 

dimensionality, we generated multiple views on the 

EEG datasets. The covariance matrices of multiple 

subsets of channels, composed of 2 or 3 channels, 

were estimated separately, and then the learning 

procedure in each of these views was performed. 

Finally, the results of different views were combined 

using the majority voting technique. F7-FZ, F3-F7, 

FP2-F7, T3-F7, and FZ-CZ-F7 indicate the selected 

channel name in international 10-20 systems. In this 

work, the channel selection was performed 

experimentally. The subsets corresponding to 

different positions on the scalp were selected 

randomly and used for training the classifiers. These 

classifiers were tested on the validation set. Some of 

the selected subsets that on average led to a higher 

accuracy on the validation set were selected for our 

experiments.  

5.2. Texture classification 

In this experiment, we applied the Brodatz texture 

http://en.wikipedia.org/wiki/Overfitting
http://en.wikipedia.org/wiki/Variance
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dataset [33]. 12 different types of textures were used 

in the learning process. All textures were gray-scale 

images that were resized to 512 × 512 pixels. Each 

image was divided into four equal parts. For each 

image, two parts that were 256 × 256 pixels were 

devoted as the training set, and the remaining made 

the test set. To describe each part of the image, 

covariance matrices in windows with random height, 

width, and center were computed.  

In these experiments, 10 random subsets were 

selected for describing each part of the image. Each 

pixel was described using 

|]/||,/||,/||,/|),,([ 2222 yIxIyIxIyxI  . Thus the 

experimental covariance matrix in each window that 

was computed by 24 would be a 5 × 5 matrix [7]: 

)1/())((
1




NFFC T

wiw

N

i

iw   
(25) 

 

where, N denotes the number of pixels in each 

window, iF is a feature vector that describes the i
th
 

pixel of the window w  and w  shows the mean 

value in that window. 

5.3. Visual object classes 
The main goal of this experiment is to recognize 

the objects from a number of visual object classes 

in realistic scenes without pre-segmenting the 

objects. PASCAL VOC 2012 that includes person, 

animal, vehicle, and indoor categories with twenty 

object classes are used in this work [42]. For each 

class, the presence/absence of an example of that 

class in the test images is determined by a binary 

classifier. To describe each image, the covariance 

matrices of pixels, which are described using 

|]/||,/||,/||,/||,/|),,(),,(),,([ yIxIyIxIyIyxIyxIyxI BBGGRBGR 

, are computed by (25). Descriptors would be a 9 × 9 

matrix. Parameters are tuned on the validation set 

and evaluated in a subset with 1200 instances of the 

test set. 

 

5.4. Experimental results 

In this work, the extracted features from different 

classes are classified by kNN, SVM, LDA, and 

kernel LDA and kernel SVM with different 

kernels. For fine tuning the penalty term of SVM 

and Lagrange multiplier in KLDA, a wide range 

of values is assessed. The optimal performance on 

the validation set determines the suitable values 

for these terms. In the case that the kernel 

methods have parameters such as the variance 

parameter in RBF and GGK kernels, these 

parameters are tuned by assessing the 

performance on the validation set. 

Accuracy of different classifiers on different 

subsets of channels on eyes-open and eyes-closed 

datasets and accuracy of an ensemble of these 

learners are reported in tables 1 and 2.

Table 1.  Accuracy of different classifiers (1-NN, 3-NN, linear SVM, SVM with RBF, TSK, GGPK, and GGK kernels) on 

different subsets of EEG signals of ADHD and BMD patients at eyes-open resting condition. 
 Channel subsets 

Classifiers 
MajorityVote FZ-CZ-F7 T3-F7 FP2-F7 F3-F7 F7-FZ 

72.09% 62.79% 67.44% 65.12% 60.47% 72.09% 1-NN 

76.74% 67.44% 74.42% 67.44% 76.74% 55.81% 3-NN 

86.05% 81.40% 55.81% 62.79% 86.05% 72.09% Linear SVM 

86.05% 79.07% 76.74% 72.09% 86.05% 79.07% SVM-RBF 

81.45% 79.07% 72.09%    69.77% 81.40% 74.42% SVM-TSK [3] 
86.05% 81.40% 88.37% 81.40% 86.05% 81.40% SVM-GGK[7] 

95.35% 86.05% 93.02% 79.07% 95.35% 93.02% SVM-GGPK 

83.72% 74.42% 55.81% 62.79% 76.74% 67.44% LDA 
81.40% 72.09% 65.12% 74.42%  62.79% 72.09% LDA_TSK 

81.40% 79.07% 76.74% 69.77% 81.40% 79.07% LDA_GGK 

86.05% 81.40% 83.72% 67.44% 81.40% 81.40% LDA-GGPK 
 

 

Table 2. Accuracy of different classifiers (1-NN, 3-NN, linear SVM, SVM with RBF, TSK, GGPK, and GGK kernels) on 

different subsets of EEG signals of ADHD and BMD patients at eyes-closed resting condition. 
 

 

Majority Vote 

Channel subsets 
Classifiers 

FZ-CZ-F7 T3-F7 FP2-F7 F3-F7 F7-FZ 

79.07% 79.07% 72.09% 79.07% 58.14% 67.44% 1-NN 

74.42% 74.42% 67.44% 76.74% 67.44% 67.44% 3-NN 
67.44% 72.09% 67.44% 65.12% 69.77% 62.79% Linear SVM 

72.09% 69.77% 76.74% 79.07% 72.09% 72.09% SVM-RBF 

74.42% 74.42% 65.12% 76.74% 69.77% 69.77% SVM-TSK [3] 
83.72% 81.40% 83.72% 88.37% 69.77% 79.07% SVM-GGK[7] 

88.37% 86.05% 79.07% 88.37% 76.74% 86.05% SVM-GGPK 

72.09% 72.09% 65.12% 65.12% 69.77% 46.51% LDA 
74.42% 81.40% 69.77% 72.09% 60.47% 69.77% LDA_TSK 

81.40% 81.40% 76.74% 83.72% 69.77% 81.40% LDA_GGK 

        86.05%         83.72%    76.74%          81.40%    72.09%         72.09% LDA-GGPK 
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Tables 3 and 7 contain accuracy of classification 

on Brodatz texture and PASCAL VOC2012 

dataset, respectively. Comparison between the 

proposed and some other topology preserving 

kernels on Riemannian manifolds are reported in 

these tables.  

The TSK kernel, which partially preserves the 

topology [3] and Gaussian kernel using geodesic 

distance (GGK) [7], are geometric kernels that are 

used for comparison with GGPK.  

The effectiveness of linearization and preserving 

the global topology of the dataset by GGPK is 

compared with RBF and Linear SVM that does 

not consider the intrinsic geometry of the dataset.  

The manifold learning methods such as LLE, 

HLLE, LE, Isomap, NPAF, and LTSA are used as 

a feature extractor on covariance matrices. 

Intrinsic dimensionality of the target is 

determined by maximum likelihood intrinsic 

dimensionality estimator (MLE) [37]. SVM with 

RBF kernel is used for classification. Comparison 

between the proposed approach and the results 

evolved on a reduced dataset by the manifold 

learning techniques are mentioned in tables 4, 5, 

6, and 8. These experiments run over random 

subsets of Brodatz texture dataset, subsets of EEG 

dataset, and VOC 20012 dataset.  

 

 
 

Table 3. Accuracy of linear SVM, SVM with RBF, TSK [3], and GGPK kernels on 12 different types of textures of Brodatz 

texture dataset. 

Accuracy Classifiers 

74.58% Linear SVM 

80.83% SVM-RBF 

86.67% SVM-TSK 

90.00% SVM-GGPK 

Table 4. Accuracy of SVM with RBF kernel trained on features extracted using LLE, HLLE, LE, LTSA, Isomap, and NPAF 

from different textures from Brodatz dataset. 
 Texture No. 

Classifiers 
1-2-3-4-5-

6-7-8-9-10-11-12 

1-2-3-4-5-6 1-2-3 5-6 
11-12 

1-2 

90.00% 90.83% 92.22% 100.0% 99.17% 98.33

% 

SVM-GGPK 

29.17% 30.55% 73.33% 61.67% 77.50% 75.83
% 

LLE+SVM-RBF 

27.22% 34.44% 55.57% 51.67% 50.83% 59.17

% 

HLLE+SVM-RBF 

35.41% 44.72% 80.83% 65.83% 84.17% 80.00

%  

LE+SVM-RBF 

27.08% 34.72% 54.81% 61.67% 55.83% 50.00
% 

LTSA+SVM-RBF 

18.47% 37.22% 70.56% 55.00% 51.67% 75.00

% 

Isomap + SVM-RBF 

33.33% 41.94% 75.56% 70.83% 61.67% 87.50

% 

NPAF + SVM-RBF 

Table 5. Accuracy of SVM with RBF kernel trained on features extracted using LLE, HLLE, LE, LTSA, Isomap, and NPAF 

on different subsets of EEG signal of ADHD and BMD patients at eye-open resting condition. 
 Channel Subsets  

Learning Techniques T4, T5, T6, P3, 

P4, PZ, O1, O2 

 

Fp1, Fp2, Fpz, 

F3, F4, F7, F8, FZ, 

C3, C4, CZ, T3 

 

All channels 

83.72% 74.42% 83.72% SVM-GGPK 
58.14% 55.00% 35.00% LLE+SVM-RBF 

46.51% 46.51% 25.58% HLLE+SVM-RBF 

79.07% 67.44% 69. 77% LE+SVM-RBF 
72.42% 30.23% 72.09% LTSA+SVM-RBF 

62.79 % 44.19% 67.44% Isomap + SVM-RBF 

48.84% 62.79% 74.42% NPAF + SVM-RBF 
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Table 6. Accuracy of SVM with RBF kernel trained on features extracted using LLE, HLLE, LE, LTSA, Isomap, and NPAF 

on different subsets of EEG signal of ADHD and BMD patients at eye-closed resting condition. 
 Channel subsets  

Learning Techniques T4, T5, T6, P3, 

P4, PZ, O1, O2 

 

Fp1, Fp2, Fpz, 

F3, F4, F7, F8, FZ, 

C3, C4, CZ, T3 

 

All channels 

81.40% 83.72% 83.72% SVM-GGPK 
51.16% 44.19% 48.84% LLE+SVM-RBF 

41.86% 46.51% 46.51% HLLE+SVM-RBF 

48.84% 67.44% 48.84% LE+SVM-RBF 
44.19% 37.21% 39.53% LTSA+SVM-RBF 

30.23% 58.14% 32.56% Isomap + SVM-RBF 

51.16% 62.79% 46.51% NPAF + SVM-RBF 
 

6. Discussion 

In our experiments, several real-world datasets 

and classifiers were used to evaluate several 

kernel functions and manifold learning 

techniques. From these experiments, the following 

results were achieved:    

The superiority of SVM-GGPK and LDA-GGPK 

over Linear SVM and LDA (Tables 1, 2, 3, and 7) 

shows the effectiveness of the proposed approach, 

and implies that measuring dissimilarities using 

the  Euclidean distance in non-linear feature space 

does not reflect dissimilarities truly. The 

superiority of SVM-GGPK and LDA-GGPK over 

kNN (Tables 1, 2) and SVM-RBF (Tables 1, 2, 3,  

 

7), which use Euclidean distance for measuring 

dissimilarities, approves this finding. The 

geometry-based kernels such as TSK, GGK, and 

GGPK gain higher discrimination rates in 

comparison with the RBF and linear kernels. This 

means that considering the geometry of data 

points in input space can be effective at learning 

kernel and outperforms generalization of the 

classifiers. 

The proposed kernel has no parameter, which is 

one of its superiorities over the RBF and GGK 

kernels whose performances strongly depend on 

the bandwidth of the kernel. 

Table 7. Accuracy of SVM with linear, RBF, GGK, and GGPK kernels trained on PASCALVOC2012 dataset. 
  Class name  

Learning Techniques 

Car Bottle Bird Aeroplane 

61.17% 14.33% 40.00% 80.75% SVM-Linear 

60.42% 19.75% 91.25% 78.25% SVM-RBF 

67.33% 21.33% 94.60% 84.76% SVM-GGK 

66.83% 24.00% 94.83% 87.75% SVM-GGPK 

Table 8. Accuracy of SVM with RBF kernel trained on features extracted using LLE, HLLE, LE, LTSA, Isomap, and 

NPAF on subsets of PASCALVOC2012 dataset. 
  Class name  

Learning Techniques 
Car Bottle Bird Aeroplane 

66.83% 24.00% 94.83% 87.75% SVM-GGPK 

50.67% 49.50% 49.83% 50.67% LLE+SVM-RBF 
50.08% 49.75% 53.08% 48.75% HLLE+SVM-RBF 

49.67% 48.75% 50.33% 50.67% LE+SVM-RBF 

44.42% 48.00% 51.83% 54.50% LTSA+SVM-RBF 
50.25% 37.83% 49.67% 64.08% Isomap + SVM-RBF 

43.67% 55.00% 52.92% 70.67% NPAF + SVM-RBF 

Table 9. p-value resulted by applying paired t-Test for comparison between SVM-GGPK and other compatitors on 

ADHD/BMD dataset in classification problem. 
 SVM-GGPK/ 

SVM-GGK 

SVM-GGPK/ 

SVM-TSK 

SVM-GGPK/ 

SVM-RBF 

SVM-GGPK/ 

Linear SVM 

SVM-GGPK/ 

3-NN 

SVM-GGPK/ 

1-NN 

Eyes-open 0.0293 0.0013 0.0011 0.0195 0.0021 3.6875e-04 

Eyes-closed 0.1576 2.1248e-04 0.0080 0.0019 1.9118e-04 0.0035 

Table 10. p-value resulted by applying paired t-Test for comparison between SVM-GGPK and other compatitors on 

Brodatz texture dataset in dimensionality reduction problem. 

 SVM-GGPK/ 

LLE+SVM-RBF 
SVM-GGPK/ 

HLLE+SVM-RBF 
SVM-GGPK/ 

 LE+SVM-RBF 
SVM-GGPK/ 

LTSA+SVM-RBF 
SVM-GGPK/ 

Isomap+SVM-RBF 
SVM-GGPK/ 

NPAF+SVM-RBF 

Brodatz   0.0054 7.1445e-05 0.0092 8.6519e-05 0.0024 0.0061 
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Experiments show the superiority of the proposed 

approach over the techniques that rely on 

manifold learning. Conventional manifold 

learning techniques are applicable only on the 

cases in which a manifold is embedded in the 

Euclidean space. In this work, our input space is 

composed of symmetric positive definite matrices. 

Since the features can be formulated as a 

Riemannian manifold and live in a non-Euclidean 

space, applying the classical manifold learning 

methods on this manifold is not compatible with 

the pre-requisites of the conventional manifold 

learning techniques. Weak generalization of 

manifold learning-based methods, which are 

reported in tables 4, 5, 6, and 8, confirm this fact. 

Therefore, to apply the manifold learning methods 

over Riemannian manifolds, it is required to 

modify some parts of these methods that depend 

on the manifold structure [36]. Some reasons that 

lead to inconvenience of the manifold learning 

techniques that are examined in this study over 

Riemannian manifold are listed what follows. 

LE tries to preserve locality in projection to the 

low-dimensional space and uses the Laplacian 

matrix for representing manifold. The 

shortcoming of LE on Riemannian manifolds is 

the result of approximating true geodesic distance 

by graph distance.  

LLE computes a weight matrix such that a data 

point can be constructed as a linear combination 

of its neighbors, and its aim is to preserve local 

linearity in a low-dimensional space. In the 

Euclidean case, this aim is achieved by solving a 

least-squares problem, while in the Riemannian 

case, it is required to solve an interpolation 

problem on the manifold. The cost function that 

should be minimized and the interpolation on the 

Riemannian manifold are some challenges that 

make LLE on Riemannian manifold different 

from the classical one.  

A learning process in HLLE consists of 

computing the mean and a set of principal 

components from the neighborhood of each point. 

In the Euclidean case, this can be done using 

PCA, while on the Riemannian manifolds, 

computing mean can be done in an iterative 

procedure, and computing principal components 

on the manifold has some challenges. For 

example, the principal geodesic analysis [38] was 

proposed to compute the principal components on 

Riemannian manifolds. 

 In the case of LTSA, in the first stage, a local 

parameterization of data points should be 

provided. This stage is computed by the 

assumption that the data points are embedded in 

the Euclidean space, and the Taylor series 

expansion in the Euclidian space around the base 

point of tangent space lead to finding local 

coordinates at the corresponding tangent space 

that is computed using PCA. Since LTSA 

estimates the tangent space of the Riemannian 

manifold at a point using available data samples in 

the neighborhood of the base point, sampling 

conditions such as the sampling extent and density 

affect the estimated tangent space. Running PCA 

on some instances of the Riemannian manifold 

leads to inaccurate local information, which 

brings poor results in classification. 

Isomap tries to preserve the global geometry in 

projection to the low-dimensional space and use 

the geodesic distance for capturing the intrinsic 

geometry of the manifold. Isomap represents the 

manifold using a graph on the available data 

points and approximates the geodesic distance 

using graph distance. The density of input data 

and bad sampling may lead to disconnectivity of 

graph and partial covering over training data. 

Over-estimation of geodesic distance and linear 

shortcuts near regions of high surface curvature 

are two disadvantages of Isomap that are the result 

of the estimation of geodesic distance by graph 

distance. These shortcomings can lead to 

overlapping of data points, and may decrease 

generalization of learners over SPD manifold. 

Manifold learning techniques, which are not 

compatible with SPD Riemannian manifold, may 

corrupt the topology of data points. In multi-class 

cases, by increasing the number of classes, 

mapping to low-dimensional space cause more 

overlapping between different classes, and lead to 

weakness of classifiers. 

To show the statistical significance of superiority 

of the proposed approach, we apply the statistical 

test on the ADHD/BMD dataset in two eyes-

closed and eyes-open resting condition in 

classification problem (Table 9) and on Brodatz 

texture dataset in dimensionality reduction 

problem (Table 10). The resulting p-values in 

most cases indicate the significant superiority of 

the methods that relied on using GGPK kernel in 

both the classification and dimensionality 

reduction problems. 

7. Conclusion 

In this paper, we proposed a global projection 

technique for mapping points lying on the SPD 

Riemannian manifold to feature space such that 

the topology of input space is preserved. Learning 

kernel over SPD manifold by computing the 

Gramian matrix, based on squared geodesic 

distance, was our contribution. 
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Superiority over approaches that partially preserve 

topology such as approaches that are relied on 

projection to tangent space or approaches that do 

not preserve topology such as some Euclidean 

distance-based kernels shows effectiveness of the 

preserving topology. 

In comparison with methods that are based upon 

the traditional manifold learning techniques, 

superiorities are observed in the experiments. The 

shortcoming of manifold learning methods over 

SPD manifold can be the result of living SPD 

manifold in non-Euclidean space, while these 
methods do computation with the assumption that 

data points live in the Euclidean space.  
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 معرفی یک هسته مبتنی بر هندسه ددگان روی منیفلد های ریمانی

 

 محمد رحمتی و *سعید شیری قیداری، سیده خدیجه سادات نژاد

 .ایران، تهران، تهران ،دانشگاه صنعتی امیرکبیر، دانشکده مهندسی کامپیوتر و فناوری اطلاعات

 20/20/0212 پذیرش؛ 21/20/0212 بازنگری؛ 20/11/0212 ارسال

 چکیده:

بهه منظهور اهراه   سازی منیفلد. خطیباشندهای واقع بر منیفلد ریمانی میسازی دادهدو گزینه به منظور خطیحقه هسته و نگاشت به صفحات مماسی 

کلاسهیک صهرانظر های هسته. باشدضروری میهای ریمانی منیفلد استاندارد یادگیری ماشین رویهای تکنیکاعمال  جهتهای لازم نمودن پیش شرط

 ،نگاشهت بهه اضهاهای مماسهیسازی با استفاده از خطینمایند. ها را به اضای ویژگی نگاشت میدر اضای ورودی به طور ضمنی داده هااز توپولوژی داده

. در این مقاله یک روش یادگیری بر منیفلدهای ریمهانی متتنهی بهر رویکهرد هسهته نمایدهای شعاعی حفظ میژئودزیکدر امتداد را تنها ها هندسه داده

 طانقه زوج ازبهین ههر  کمینهه یکتهابا ژئودزیهک  ،ی کاملند. محاسته ماتریس گرامیان با استفاده از اواصل ژئودزیک روی یک منیفلد ریمایگردپیشنهاد 

ههای حقیقهی متشهکل از روی مجموعهه دادهباشد. رویکهرد پیشهنهادی ها مینماید که متاثر از توپولوژی دادهویژگی اراه  مییک نگاشت  روی منیفلد،

-ی کارایی رویکهرد پیشهنهادی، ویژگهی. برای ارزیاباتگرمورد ارزیابی قرار و باات ء بصریکلاسهای اشیا ،سیگنالهای بیماران با دو اختلال روانی متفاوت

. نتایج تجربی بهه دسهت دمهده اترگهای متقارن و مثتت معین مورد ارزیابی قرار ر در این حوزه روی منیفلد ماتریسهای برتشاستخراج شده با روهای 

  دهد.نمایند را نشان میمی ی توجهئجزنمایند یا به طور داده توجه نمیهایی که به توپولوژی مجموعهدقت روش پیشنهادی در قیاس با روشبرتری 

 .حقه هسته، منیفلد ریمانی، حفظ هندسه، ماتریس گرامیان :کلمات کلیدی

 


