N. Taghvaei; B. Masoumi; M. R. Keyvanpour
Abstract
In general, humans are very complex organisms, and therefore, research into their various dimensions and aspects, including personality, has become an attractive subject of research. With the advent of technology, the emergence of a new kind of communication in the context of social networks has also ...
Read More
In general, humans are very complex organisms, and therefore, research into their various dimensions and aspects, including personality, has become an attractive subject of research. With the advent of technology, the emergence of a new kind of communication in the context of social networks has also given a new form of social communication to humans, and the recognition and categorization of people in this new space have become a hot topic of research that has been challenged by many researchers. In this paper, considering the Big Five personality characteristics of individuals, first, categorization of related work is proposed, and then a hybrid framework based on Fuzzy Neural Networks (FNN), along with, Deep Neural Networks (DNN) has been proposed that improves the accuracy of personality recognition by combining different FNN-classifiers with DNN-classifier in a proposed two-stage decision fusion scheme. Finally, a simulation of the proposed approach is carried out. The proposed approach is using the structural features of Social Networks Analysis (SNA), along with a linguistic analysis (LA) feature extracted from the description of the activities of individuals and comparison with the previous similar researches. The results, well-illustrated the performance improvement of the proposed framework up to 83.2 % of average accuracy on myPersonality dataset.
H.3. Artificial Intelligence
Z. Karimi Zandian; M. R. Keyvanpour
Abstract
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods ...
Read More
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based on network level. In this paper a method called MEFUASN is proposed to extract features that is based on social network analysis and then both of obtained features and features based on user level are combined together and used to detect fraud using semi-supervised learning. Evaluation results show using the proposed feature extraction as a pre-processing step in fraud detection improves the accuracy of detection remarkably while it controls runtime in comparison with other methods.